【题目】“难度系数”反映试题的难易程度,难度系数越大,题目得分率越高,难度也就越小.“难度系数”的计算公式为,其中,
为难度系数,
为样本平均失分,
为试卷总分(一般为100分或150分).某校高三年级的李老师命制了某专题共5套测试卷(每套总分150分),用于对该校高三年级480名学生进行每周测试.测试前根据自己对学生的了解,预估了每套试卷的难度系数,如下表所示:
试卷序号 | 1 | 2 | 3 | 4 | 5 |
考前预估难度系数 | 0.7 | 0.64 | 0.6 | 0.6 | 0.55 |
测试后,随机抽取了50名学生的数据进行统计,结果如下:
试卷序号 | 1 | 2 | 3 | 4 | 5 |
实测平均分 | 102 | 99 | 93 | 93 | 87 |
(1)根据试卷2的难度系数估计这480名学生第2套试卷的平均分;
(2)从抽样的50名学生的5套试卷中随机抽取2套试卷,记这2套试卷中平均分超过96分的套数为,求
的分布列和数学期望;
(3)试卷的预估难度系数和实测难度系数之间会有偏差.设为第
套试卷的实测难度系数,并定义统计量
,若
,则认为本专题的5套试卷测试的难度系数预估合理,否则认为不合理.试检验本专题的5套试卷对难度系数的预估是否合理.
【题目】某生鲜批发店每天从蔬菜生产基地以5元/千克购进某种绿色蔬菜,售价8元/千克,若每天下午4点以前所购进的绿色蔬菜没有售完,则对未售出的绿色蔬菜降价处理,以3元/千克出售.根据经验,降价后能够把剩余蔬菜全部处理完毕,且当天不再进货.该生鲜批发店整理了过往30天(每天下午4点以前)这种绿色蔬菜的日销售量(单位:千克)得到如下统计数据(视频率为概率)(注:x,y∈N*)
每天下午4点前销售量 | 350 | 400 | 450 | 500 | 550 |
天数 | 3 | 9 | x | y | 2 |
(1)求在未来3天中,至少有1天下午4点前的销售量不少于450千克的概率.
(2)若该生鲜批发店以当天利润期望值为决策依据,当购进450千克比购进500千克的利润期望值大时,求x的取值范围.
【题目】某城市208年抽样100户居民的月均用电量(单位:千瓦时),以,
,
,
,
,
,
分组,得到如下频率分布表:
分组 | 频数 | 频率 |
0.04 | ||
19 | ||
0.22 | ||
25 | 0.25 | |
15 | 0.15 | |
10 | ||
5 | 0.05 |
(1)求表中的值,并估计2018年该市居民月均用电量的中位数
;
(2)该城市最近十年的居民月均用电量逐年上升,以当年居民月均用电量的中位数(单位:千瓦时)作为统计数据,下图是部分数据的折线图.
由折线图看出,可用线性回归模型拟合与年份
的关系.
①为简化运算,对以上数据进行预处理,令,
,请你在答题卡上完成数据预处理表;
②建立关于
的线性回归方程,预测2020年该市居民月均用电量的中位数.
附:回归直线的斜率和截距的最小二乘估计公式分别为:
,
.