【题目】某种规格的矩形瓷砖根据长期检测结果,各厂生产的每片瓷砖质量都服从正态分布,并把质量在之外的瓷砖作为废品直接回炉处理,剩下的称为正品.
(Ⅰ)从甲陶瓷厂生产的该规格瓷砖中抽取10片进行检查,求至少有1片是废品的概率;
(Ⅱ)若规定该规格的每片正品瓷砖的“尺寸误差”计算方式为:设矩形瓷砖的长与宽分别为、,则“尺寸误差”为,按行业生产标准,其中“优等”、“一级”、“合格”瓷砖的“尺寸误差”范围分别是,、,、,(正品瓷砖中没有“尺寸误差”大于的瓷砖),每片价格分别为7.5元、6.5元、5.0元.现分别从甲、乙两厂生产的该规格的正品瓷砖中随机抽取100片瓷砖,相应的“尺寸误差”组成的样本数据如下:
尺寸误差 | 0 | 0.1 | 0.2 | 0.3 | 0.4 | 0.5 | 0.6 |
频数 | 10 | 30 | 30 | 5 | 10 | 5 | 10 |
(甲厂瓷砖的“尺寸误差”频数表)用这个样本的频率分布估计总体分布,将频率视为概率.
(ⅰ)记甲厂该种规格的2片正品瓷砖卖出的钱数为(元,求的分布列及数学期望.
(ⅱ)由如图可知,乙厂生产的该规格的正品瓷砖只有“优等”、“一级”两种,求5片该规格的正品瓷砖卖出的钱数不少于36元的概率.
附:若随机变量服从正态分布,则;,,.