题目内容
【题目】在直角坐标系中,曲线的参数方程为(为参数),以坐标原点为极点,轴的正半轴为极轴,取相同长度单位建立极坐标系,直线的极坐标方程为.
(Ⅰ)求曲线和直线的直角坐标方程;
(Ⅱ)直线与轴交点为,经过点的直线与曲线交于,两点,证明:为定值.
【答案】(Ⅰ)曲线:.的直角坐标方程为.(Ⅱ)见证明
【解析】
(Ⅰ)根据曲线的参数方程,平方相加,即可求得曲线普通方程,再根据极坐标方程与直角坐标方程的互化公式,即可得到直线的直角坐标方程.
(Ⅱ)设过点的直线方程为(为参数),代入曲线的普通方程,根据参数的几何意义,即可求解.
(Ⅰ)由题意,可得,
化简得曲线:.
直线的极坐标方程展开为,
故的直角坐标方程为.
(Ⅱ)显然的坐标为,不妨设过点的直线方程为(为参数),
代入:得,
所以为定值.
练习册系列答案
相关题目