题目内容
【题目】已知函数,,.
(1)求函数的极值;
(2)若函数有两个零点,求实数取值范围;
(3)若当时,恒成立,求实数的最大值.
【答案】(1)极小值,没有极大值; (2); (3)2 .
【解析】
(1)直接进行求导,根据导数与原函数的关系进行极值求解
(2)由于参数的存在,故需对进行分类讨论,时与题意不符,舍去,对进行导数求解,通过增减性进行辨析,当时取到极大值,此时需要判断函数在的左右两侧存在函数值小于零的点,进而得证
(3)令,先求导,再根据恒成立问题求解参数
(1),令,得,
极小值 |
所以有极小值,没有极大值;
(2),
①时,,在单调递增,此时至多有一个零点,这与题意不符;
②,令,得,
极大值 |
因为函数有两个零点,所以,得,
,,又在上单调,且图象连续不间断,所以在上有一个零点;
,
,所以在单调减,所以,
所以,,,又在上单调,且图象连续不间断,所以在上有一个零点;
综上,实数取值范围为;
(3)记
,令,
所以, ,
①时,,在上单调增,所以,符合题意;
②时,,,又在上单调增,
所以,,使得
极小值 |
则当时,,这与恒成立不符,
综上,实数的最大值为2.
练习册系列答案
相关题目