11.把直线l:x+$\sqrt{3}$y=0绕原点按顺时针方向旋转30°,得到直线m,则直线m与圆x2+y2-4x+1=0的位置关系是( )
A. | 直线与圆相切 | B. | 直线与圆相交但不过圆心 | ||
C. | 直线与圆相离 | D. | 直线过圆心 |
10.某城市随机抽取一年(365天)内100天的空气质量指数API的监测数据,结果统计如下:
记某企业每天由空气污染造成的经济损失S(单位:元),空气质量指数API为ω.在区间[0,100]对企业没有造成经济损失;在区间∴F对企业造成经济损失成直线模型(当API为150时造成的经济损失为500元,当API为200时,造成的经济损失为700元);当API大于300时造成的 经济损失为2000元;
(1)试写出S(ω)的表达式:
(2)试估计在本年内随机抽取一天,该天经济损失S大于200元且不超过900元的概率;
(3)若本次抽取的样本数据有30天是在供暖季,其中有8天为重度污染,完成下面2×2列联表,并判断能否有95%的把握认为该市本年空气重度污染与供暖有关?
附:
K2=$\frac{n(ad-bc)^{2}}{(a+b)(b+c)(a+c)(b+d)}$
API | [0.50] | (0,100] | (100,150] | (150,200] | (200,250] | (250,300] | >300 |
空气质量 | 优 | 良 | 轻微污染 | 轻度污染 | 中度污染 | 中度重污染 | 重度污染 |
天数 | 4 | 13 | 18 | 30 | 9 | 11 | 15 |
(1)试写出S(ω)的表达式:
(2)试估计在本年内随机抽取一天,该天经济损失S大于200元且不超过900元的概率;
(3)若本次抽取的样本数据有30天是在供暖季,其中有8天为重度污染,完成下面2×2列联表,并判断能否有95%的把握认为该市本年空气重度污染与供暖有关?
附:
P(K2≥k0) | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k0 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
非重度污染 | 重度污染 | 合计 | |
供暖季 | |||
非供暖季 | |||
合计 | 100 |
9.已知集合A={1,2,3,4},B={(x,y)|x∈A,y∈A,xy∈A},则集合B的所有真子集的个数为( )
A. | 512 | B. | 256 | C. | 255 | D. | 254 |
5.已知F为抛物线y2=x的焦点,点A,B在该抛物线上且位于x轴的两侧,$\overrightarrow{OA}$•$\overrightarrow{OB}$=6(其中O为坐标原点),则△ABO与△AFO面积之和的最小值是( )
0 248471 248479 248485 248489 248495 248497 248501 248507 248509 248515 248521 248525 248527 248531 248537 248539 248545 248549 248551 248555 248557 248561 248563 248565 248566 248567 248569 248570 248571 248573 248575 248579 248581 248585 248587 248591 248597 248599 248605 248609 248611 248615 248621 248627 248629 248635 248639 248641 248647 248651 248657 248665 266669
A. | $\frac{{17\sqrt{2}}}{8}$ | B. | 3 | C. | $\frac{{3\sqrt{3}}}{8}$ | D. | $\frac{{3\sqrt{13}}}{2}$ |