题目内容
5.已知F为抛物线y2=x的焦点,点A,B在该抛物线上且位于x轴的两侧,$\overrightarrow{OA}$•$\overrightarrow{OB}$=6(其中O为坐标原点),则△ABO与△AFO面积之和的最小值是( )A. | $\frac{{17\sqrt{2}}}{8}$ | B. | 3 | C. | $\frac{{3\sqrt{3}}}{8}$ | D. | $\frac{{3\sqrt{13}}}{2}$ |
分析 先设直线方程和点的坐标,联立直线与抛物线的方程得到一个一元二次方程,再利用韦达定理及$\overrightarrow{OA}$•$\overrightarrow{OB}$=6消元,最后将面积之和表示出来,探求最值问题.
解答 解:设直线AB的方程为:x=ty+m,
点A(x1,y1),B(x2,y2),直线AB与x轴的交点为M(m,0),
x=ty+m代入y2=x,
可得y2-ty-m=0,
根据韦达定理有y1•y2=-m,
∵$\overrightarrow{OA}$•$\overrightarrow{OB}$=6,
∴x1•x2+y1•y2=6,从而(y1•y2)2+y1•y2-6=0,
∵点A,B位于x轴的两侧,
∴y1•y2=-3,故m=3.
不妨令点A在x轴上方,则y1>0,
又F($\frac{1}{4}$,0),
∴S△ABO+S△AFO=$\frac{1}{2}$×3×(y1-y2)+$\frac{1}{2}$×$\frac{1}{4}$y1=$\frac{13}{8}$y1+$\frac{9}{2{y}_{1}}$
≥2$\sqrt{\frac{9×13}{16}}$=$\frac{3\sqrt{13}}{2}$,
当且仅当$\frac{13}{8}$y1=$\frac{9}{2{y}_{1}}$,即y1=$\frac{6\sqrt{13}}{13}$时,取“=”号,
∴△ABO与△AFO面积之和的最小值是$\frac{3\sqrt{13}}{2}$,
故选D.
点评 求解本题时,应考虑以下几个要点:
1、联立直线与抛物线的方程,消x或y后建立一元二次方程,利用韦达定理与已知条件消元,这是处理此类问题的常见模式.
2、求三角形面积时,为使面积的表达式简单,常根据图形的特征选择适当的底与高.
3、利用基本不等式时,应注意“一正,二定,三相等”.
A. | “x=6”是“x2-5x-6=0”的必要不充分条件 | |
B. | 命题“若x=y,则sinx=siny”的逆否命题为真命题 | |
C. | 命题“若x2=1,则x=1”的否命题为“若x2=1,则x≠1” | |
D. | 命题“?x∈R,使得x2+x+1<0”的否定是“?x∈R,均有x2+x+1>0” |
API | [0.50] | (0,100] | (100,150] | (150,200] | (200,250] | (250,300] | >300 |
空气质量 | 优 | 良 | 轻微污染 | 轻度污染 | 中度污染 | 中度重污染 | 重度污染 |
天数 | 4 | 13 | 18 | 30 | 9 | 11 | 15 |
(1)试写出S(ω)的表达式:
(2)试估计在本年内随机抽取一天,该天经济损失S大于200元且不超过900元的概率;
(3)若本次抽取的样本数据有30天是在供暖季,其中有8天为重度污染,完成下面2×2列联表,并判断能否有95%的把握认为该市本年空气重度污染与供暖有关?
附:
P(K2≥k0) | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k0 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
非重度污染 | 重度污染 | 合计 | |
供暖季 | |||
非供暖季 | |||
合计 | 100 |
表一:
经济损失4000元以下 | 经济损失4000元以上 | 合计 | |
捐款超过500元 | 30 | 9 | 39 |
捐款低于500元 | 5 | 6 | 11 |
合计 | 35 | 15 | 50 |
(Ⅱ)台风后区委会号召小区居民为台风重灾区捐款,小明调查的50居民捐款情况如表1,在表1表格空白处填写正确数字,并说明是否有95%以上的把握认为捐款数额是否多于或少于500元和自身经济损失是否到4000元有关?
(Ⅲ)台风造成了小区多户居民门窗损坏,若小区所有居民的门窗均由李师傅和张师傅两人进行维修,李师傅每天早上在7:00到8:00之间的任意时刻来到小区,张师傅每天早上在7:30到8:30分之间的任意时刻来到小区,求连续3天内,有2天李师傅比张师傅早到小区的概率.
k0 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
P(K2≥k0) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |