题目内容
8.已知抛物线C:y2=4x上一点P,若以P为圆心,|PO|为半径作圆与抛物线的准线l交于不同的两点M,N,设准线l与x轴的交点为A,则$\frac{1}{|AM|}$+$\frac{1}{|AN|}$的取值范围是(0,$\sqrt{2}$).分析 设P($\frac{{{y}_{0}}^{2}}{4}$,y0),则圆P的方程为(x-$\frac{{{y}_{0}}^{2}}{4}$)2+(y-y0)2=$\frac{{{y}_{0}}^{4}}{16}$+y02,设M(-1,y1),N(-1,y2),$\frac{1}{|AM|}$+$\frac{1}{|AN|}$=$\frac{|{y}_{1}|+|{y}_{2}|}{|{y}_{1}{y}_{2}|}$=$\frac{4}{|{y}_{0}|+\frac{2}{|{y}_{0}|}}$,利用函数的单调性,即可求出$\frac{1}{|AM|}$+$\frac{1}{|AN|}$的取值范围.
解答 解:设P($\frac{{{y}_{0}}^{2}}{4}$,y0),则圆P的方程为(x-$\frac{{{y}_{0}}^{2}}{4}$)2+(y-y0)2=$\frac{{{y}_{0}}^{4}}{16}$+y02,
令x=-1,得y2-2y0y+1+$\frac{{{y}_{0}}^{2}}{2}$=0,
设M(-1,y1),N(-1,y2),则y1y2=1+$\frac{{{y}_{0}}^{2}}{2}$,y1+y2=2y0,
△=2y02-4>0,y02>2,
∴$\frac{1}{|AM|}$+$\frac{1}{|AN|}$=$\frac{|{y}_{1}|+|{y}_{2}|}{|{y}_{1}{y}_{2}|}$=$\frac{4}{|{y}_{0}|+\frac{2}{|{y}_{0}|}}$,
令t=|y0|(t>$\sqrt{2}$),则y=$\frac{4}{t+\frac{2}{t}}$在($\sqrt{2}$,+∞)上单调递减,
∴y=$\frac{4}{t+\frac{2}{t}}$∈(0,$\sqrt{2}$),
∴$\frac{1}{|AM|}$+$\frac{1}{|AN|}$的取值范围是(0,$\sqrt{2}$).
故答案为:(0,$\sqrt{2}$).
点评 本题考查抛物线方程,考查函数的单调性,考查学生的计算能力,确定$\frac{1}{|AM|}$+$\frac{1}{|AN|}$=$\frac{|{y}_{1}|+|{y}_{2}|}{|{y}_{1}{y}_{2}|}$=$\frac{4}{|{y}_{0}|+\frac{2}{|{y}_{0}|}}$是关键.
表1:男生
等级 | 优秀 | 合格 | 尚待改进 |
频数 | 15 | 3 | y |
等级 | 优秀 | 合格 | 尚待改进 |
频数 | 15 | x | 5 |
( II)由表中统计数据填写下面2×2列联表,并判断是否有90%的把握认为“测评结果优秀与性别有关”?
男生 | 女生 | 总计 | |
优秀 | |||
非优秀 | |||
总计 |
P(K2≥k0) | 0.100 | 0.050 | 0.010 |
k0 | 2.706 | 3.841 | 6.635 |
A. | $\frac{27}{2}$ | B. | $\frac{45}{2}$ | C. | -$\frac{27}{2}$ | D. | -$\frac{45}{2}$ |
A. | 充分不必要条件 | B. | 必要不充分条件 | ||
C. | 充要条件 | D. | 既不充分也不必要条件 |
A. | p∧q | B. | (¬p)∧q | C. | (?p)∧(¬q) | D. | p∨(¬q) |
A. | (0,3) | B. | (3,5) | C. | (-1,0) | D. | (0,3] |
A. | 1 | B. | 2 | C. | 3 | D. | 4 |