13.在△ABC中,角A,B,C成单调递增的等差数列,a,b,c是的△ABC三边,$b=\frac{{\sqrt{3}}}{2}$,则c-a的取值范围是( )
A. | $(0,\frac{1}{4})$ | B. | $(0,\frac{{\sqrt{3}}}{2})$ | C. | $(0,\frac{1}{2})$ | D. | ($\frac{1}{4}$,$\frac{\sqrt{3}}{2}$) |
11.已知点P是抛物线y2=4x上的一点,设点P到此抛物线准线的距离为d1,到直线x+2y-12=0的距离为d2,则d1+d2的最小值为( )
A. | 4 | B. | $\frac{11}{5}$ | C. | 5 | D. | $\frac{11\sqrt{5}}{5}$ |
10.已知△ABC利用斜二测画法画出的直观图是边长为2的正三角形,则△ABC的面积为( )
A. | $\sqrt{3}$ | B. | 2$\sqrt{3}$ | C. | $\sqrt{6}$ | D. | 2$\sqrt{6}$ |
8.已知函数$f(x)=3sin({ωx+\frac{π}{3}})\;({ω>0})$和g(x)=2cos(2x+φ)+1$({|φ|<\frac{π}{2}})$的图象的对称轴完全相同则φ的值为( )
A. | $\frac{π}{6}$ | B. | $-\frac{π}{6}$ | C. | $\frac{π}{3}$ | D. | $-\frac{π}{3}$ |
5.在△ABC中,BC=a,AC=b,a,b是方程x2-2$\sqrt{3}$x+2=0的两个根,且2cos(A+B)=1.则角C的大小( )
A. | 60° | B. | 90° | C. | 120° | D. | 180° |
4.函数f(x)=cos2x+sinx的最小值是( )
0 248277 248285 248291 248295 248301 248303 248307 248313 248315 248321 248327 248331 248333 248337 248343 248345 248351 248355 248357 248361 248363 248367 248369 248371 248372 248373 248375 248376 248377 248379 248381 248385 248387 248391 248393 248397 248403 248405 248411 248415 248417 248421 248427 248433 248435 248441 248445 248447 248453 248457 248463 248471 266669
A. | $\frac{\sqrt{2}-1}{2}$ | B. | $\frac{-1+\sqrt{2}}{2}$ | C. | -1 | D. | $\frac{1-\sqrt{2}}{2}$ |