题目内容
5.在△ABC中,BC=a,AC=b,a,b是方程x2-2$\sqrt{3}$x+2=0的两个根,且2cos(A+B)=1.则角C的大小( )A. | 60° | B. | 90° | C. | 120° | D. | 180° |
分析 运用内角和定理和诱导公式,结合特殊角的三角函数值,即可得到C.
解答 解:cosC=cos[π-(A+B)]
=-cos(A+B)=-$\frac{1}{2}$,
由0°<C<180°,
则C=120°.
故选:C.
点评 本题考查诱导公式和三角形的内角和定理的运用,考查计算能力,属于基础题.
练习册系列答案
相关题目
16.设函数y=f(x)在区间(a,b)上的导函数f′(x),f′(x)在区间(a,b)上的导函数f″(x),若在区间(a,b)上f″(x)<0,则称函数f(x)在区间(a,b)上为“凸函数”,已知f(x)=$\frac{1}{20}$x5-$\frac{1}{12}$mx4-2x2在(1,3)上为“凸函数”,则实数m的取值范围是( )
A. | (-∞,$\frac{23}{9}$) | B. | [-3,$\frac{23}{9}$] | C. | [$\frac{23}{9}$,+∞) | D. | [-3,+∞) |
13.已知等比数列{an},若存在两项am,an使得aman=a32,则$\frac{1}{m}$+$\frac{4}{n}$的最小值为( )
A. | $\frac{3}{2}$ | B. | $\frac{5}{3}$ | C. | $\frac{9}{4}$ | D. | $\frac{7}{6}$ |
20.函数f(x)=lnx-x2的极值情况为( )
A. | 无极值 | B. | 有极小值,无极大值 | ||
C. | 有极大值,无极小值 | D. | 不确定 |
10.已知△ABC利用斜二测画法画出的直观图是边长为2的正三角形,则△ABC的面积为( )
A. | $\sqrt{3}$ | B. | 2$\sqrt{3}$ | C. | $\sqrt{6}$ | D. | 2$\sqrt{6}$ |