19.(1-x)4(1-$\sqrt{x}$)3展开式中x2的系数是( )
A. | 3 | B. | 0 | C. | -3 | D. | -6 |
18.已知x、y的值如下表所示:
如果y与x呈线性相关且回归直线方程为$\widehat{y}$=bx+3.4,那么b=$\frac{8}{15}$.
X | 2 | 3 | 4 |
y | 5 | 4 | 6 |
16.在某地区2008年至2014年中,每年的居民人均纯收入y(单位:千元)的数据如下表:
对变量t与y进行相关性检验,得知t与y之间具有线性相关关系.
(Ⅰ)求y关于t的线性回归方程;
(Ⅱ)预测该地区2016年的居民人均纯收入.
附:回归直线的斜率和截距的最小二乘估计公式分别为:$\hat b=\frac{{\sum_{i=1}^n{({t_i}-\bar\overline{t})({y_i}-\bar\overline{y})}}}{{\sum_{i=1}^n{{{({t_i}-\bar\overline{t})}^2}}}}$,$\hat a=\bar\overline{y}-\hat b\bar\overline{t}$.
年 份 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 |
年份代号t | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
人均纯收入y | 2.7 | 3.6 | 3.3 | 4.6 | 5.4 | 5.7 | 6.2 |
(Ⅰ)求y关于t的线性回归方程;
(Ⅱ)预测该地区2016年的居民人均纯收入.
附:回归直线的斜率和截距的最小二乘估计公式分别为:$\hat b=\frac{{\sum_{i=1}^n{({t_i}-\bar\overline{t})({y_i}-\bar\overline{y})}}}{{\sum_{i=1}^n{{{({t_i}-\bar\overline{t})}^2}}}}$,$\hat a=\bar\overline{y}-\hat b\bar\overline{t}$.
10.一盒中装有5张彩票,其中2 张有奖,3张无奖,现从此盒中不放回地抽取2次,每次抽取一张彩票.设第1次抽出的彩票有奖的事件为A,第2次抽出的彩票有奖的事件为B,则P(B|A)=( )
0 248208 248216 248222 248226 248232 248234 248238 248244 248246 248252 248258 248262 248264 248268 248274 248276 248282 248286 248288 248292 248294 248298 248300 248302 248303 248304 248306 248307 248308 248310 248312 248316 248318 248322 248324 248328 248334 248336 248342 248346 248348 248352 248358 248364 248366 248372 248376 248378 248384 248388 248394 248402 266669
A. | $\frac{2}{3}$ | B. | $\frac{2}{5}$ | C. | $\frac{1}{3}$ | D. | $\frac{1}{4}$ |