19.一台使用的时间较长的机器,按不同的转速生产出来的某机械零件有一些会有缺点,每小时生产有缺点零件的多少,随机器的运转的速度而变化,下表为抽样试验的结果:
(1)如果y对x线性相关,且回归直线方程y=0.7286x-a,依据表中数据求a的值;
(2)若实际生产中,允许每小时的产品中有缺点的零件最多为10个,那么机器的运转速度应控制在什么范围内?(精确到0.0001)
参考公式:$\left\{\begin{array}{l}\hat b=\frac{{\sum_{i=1}^n{({x_i}-\overline x)({y_i}-\overline y)}}}{{\sum_{i=1}^n{{{({x_i}-\overline x)}^2}}}}=\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline x\overline y}}}{{\sum_{i=1}^n{x_i^2-n{{\overline x}^2}}}}\\ \hat a=\overline y-\hat b\overline x\end{array}\right.$.
转速x(转/秒) | 16 | 14 | 12 | 8 |
每小时生产有缺点的零件数y件) | 11 | 9 | 8 | 5 |
(2)若实际生产中,允许每小时的产品中有缺点的零件最多为10个,那么机器的运转速度应控制在什么范围内?(精确到0.0001)
参考公式:$\left\{\begin{array}{l}\hat b=\frac{{\sum_{i=1}^n{({x_i}-\overline x)({y_i}-\overline y)}}}{{\sum_{i=1}^n{{{({x_i}-\overline x)}^2}}}}=\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline x\overline y}}}{{\sum_{i=1}^n{x_i^2-n{{\overline x}^2}}}}\\ \hat a=\overline y-\hat b\overline x\end{array}\right.$.
17.某产品的广告费用x与销售y的统计数据如表
根据上表可得回归方程$\hat y=\hat bx+\hat a$中的$\hat b$为9.4,据此模型预报广告费用为6万元时销售额为( )
广告费用x(万元 | 1 | 2 | 3 | 4 |
销售额y(万元) | 4.5 | 4 | 3 | 2.5 |
A. | 46.4 万元 | B. | 65.5万元 | C. | 67.7万元 | D. | 72万元 |
15.某个服装店经营某种服装,在某周内获纯利润y(元)与该周每天销售这种服装件数x之间的一组数据关系见下表:
已知:$\sum_{i=1}^{7}$${x}_{i}^{2}$=280,$\sum_{i=1}^{7}$xiyi=3 487.
(1)求$\overline{x}$,$\overline{y}$;
(2)画出散点图;
(3)求纯利润y与每天销售件数x之间的回归直线方程.
x | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
y | 66 | 69 | 73 | 81 | 89 | 90 | 91 |
(1)求$\overline{x}$,$\overline{y}$;
(2)画出散点图;
(3)求纯利润y与每天销售件数x之间的回归直线方程.
14.定积分:$\int_{-\frac{π}{2}}^{\frac{π}{2}}{({x+sinx})}dx$=( )
A. | $\frac{π^2}{8}+1$ | B. | $\frac{π^2}{4}+2$ | C. | 1 | D. | 0 |
13.在2013年春节期间,某市物价部门,对本市五个商场销售的某商品一天的销售量及其价格进行调查,五个商场的售价x元和销售量y件之间的一组数据如下表所示:
通过分析,发现销售量y对商品的价格x具有线性相关关系.
(1)求销售量y对商品的价格x的回归直线方程;
(2)欲使销售量为12,则价格应定为多少.
附:在回归直线$y=\hat bx+\hat a$中$\hat b=\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\bar x\bar y}}}{{\sum_{i=1}^n{x_i^2-n{{\bar x}^2}}}}$,$\hat a$=$\overline{y}$-$\stackrel{∧}{b}$$\overline{x}$.
价格x | 9 | 9.5 | 10 | 10.5 | 11 |
销售量y | 11 | 10 | 8 | 6 | 5 |
(1)求销售量y对商品的价格x的回归直线方程;
(2)欲使销售量为12,则价格应定为多少.
附:在回归直线$y=\hat bx+\hat a$中$\hat b=\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\bar x\bar y}}}{{\sum_{i=1}^n{x_i^2-n{{\bar x}^2}}}}$,$\hat a$=$\overline{y}$-$\stackrel{∧}{b}$$\overline{x}$.
10.在△ABC中,b=8,c=8$\sqrt{3}$,S△ABC=16$\sqrt{3}$,则A等于( )
0 248192 248200 248206 248210 248216 248218 248222 248228 248230 248236 248242 248246 248248 248252 248258 248260 248266 248270 248272 248276 248278 248282 248284 248286 248287 248288 248290 248291 248292 248294 248296 248300 248302 248306 248308 248312 248318 248320 248326 248330 248332 248336 248342 248348 248350 248356 248360 248362 248368 248372 248378 248386 266669
A. | 30° | B. | 150° | C. | 30°或150° | D. | 60° |