16.已知离心率为$\frac{1}{2}$的椭圆的左右焦点分别为F1,F2,椭圆上一点P满足:|PF1|=2|PF2|,则cos∠PF1F2=( )
A. | $\frac{11}{16}$ | B. | $\frac{7}{8}$ | C. | -$\frac{1}{4}$ | D. | 不确定 |
15.沙坪坝凯瑞商都于2015年4月24日重新装修开业,某调查机构通过调查问卷的形式对900名顾客进行购物满意度调查,并随机抽取了其中30名顾客(女16名.男14名)的得分(满分50分),如表1:
表1
(Ⅰ)根据以上数据,估计这900名顾客中得分大于45分的人数;
(Ⅱ)现用计算器求得这30名顾客的平均得分为40.5分,若规定大于平均分为“满意”,
否则为“不满意”,请完成表2:
表2
(Ⅲ)根据上述表中数据,利用独立性检验的方法判断,能否在犯错误的概率不超过1%的前提下,认为顾客“性别”与“购物是否满意”有关?
参考公式和数据:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$
表1
女 | 47 | 36 | 32 | 48 | 34 | 44 | 43 | 47 | 46 | 41 | 43 | 42 | 50 | 43 | 35 | 49 |
男 | 37 | 35 | 34 | 43 | 46 | 36 | 38 | 40 | 39 | 32 | 48 | 33 | 40 | 34 |
(Ⅱ)现用计算器求得这30名顾客的平均得分为40.5分,若规定大于平均分为“满意”,
否则为“不满意”,请完成表2:
表2
“满意”的人数 | “不满意”的人数 | 合计 | |
女 | 16 | ||
男 | 14 | ||
合计 | 40 |
参考公式和数据:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$
P(k2≥k) | 0.10 | 0.050 | 0.025 | 0.010 | 0.001 |
k | 2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
10.若a,b∈R,则不等式|2+ax|≥|2x+b|的解集为R的充要条件是( )
A. | a=±2 | B. | a=b=±2 | C. | ab=4且|a|≤2 | D. | ab=4且|a|≥2 |
9.若x>0,y>0,且$\sqrt{x}$+$\sqrt{y}$≤a$\sqrt{x+y}$恒成立,则a的最小值是( )
0 247611 247619 247625 247629 247635 247637 247641 247647 247649 247655 247661 247665 247667 247671 247677 247679 247685 247689 247691 247695 247697 247701 247703 247705 247706 247707 247709 247710 247711 247713 247715 247719 247721 247725 247727 247731 247737 247739 247745 247749 247751 247755 247761 247767 247769 247775 247779 247781 247787 247791 247797 247805 266669
A. | 2$\sqrt{2}$ | B. | $\sqrt{2}$ | C. | 2 | D. | 1 |