7.设S=$\sqrt{1+\frac{1}{{1}^{2}}+\frac{1}{{2}^{2}}}$+$\sqrt{1+\frac{1}{{2}^{2}}+\frac{1}{{3}^{2}}}$+$\sqrt{1+\frac{1}{{3}^{2}}+\frac{1}{{4}^{2}}}$+…+$\sqrt{1+\frac{1}{201{4}^{2}}+\frac{1}{201{5}^{2}}}$,则不大于S的最大整数等于( )
A. | 2016 | B. | 2015 | C. | 2014 | D. | 2013 |
6.设a,b是非零实数,且满足$\frac{asin\frac{π}{5}+bcos\frac{π}{5}}{acos\frac{π}{5}-bsin\frac{π}{5}}$=tan$\frac{8π}{15}$,若类比两角和的正切公式,则$\frac{b}{a}$=( )
A. | 4 | B. | $\sqrt{15}$ | C. | 2 | D. | $\sqrt{3}$ |
5.演绎推理“因为f′(x0)=0时,x0是f(x)的极值点.而对于函数f(x)=x3,f′(0)=0.所以0是函数f(x)=x3的极值点.”所得结论错误的原因是( )
A. | 大前提错误 | B. | 小前提错误 | ||
C. | 推理形式错误 | D. | 大前提和小前提都错误 |
4.若实数x,y满足$\frac{{x}^{2}}{25}+\frac{{y}^{2}}{16}$=1,则z=x-2y的最大值是( )
A. | 4 | B. | 5 | C. | $\sqrt{89}$ | D. | $\sqrt{93}$ |
18.把函数f(x)=sin(ωx+$\frac{π}{3}$)(ω>0)的图象向右平移$\frac{π}{6}$个单位后,得到函数g(x)的图象,若g(x)为偶函数,则ω的最小值为( )
0 247310 247318 247324 247328 247334 247336 247340 247346 247348 247354 247360 247364 247366 247370 247376 247378 247384 247388 247390 247394 247396 247400 247402 247404 247405 247406 247408 247409 247410 247412 247414 247418 247420 247424 247426 247430 247436 247438 247444 247448 247450 247454 247460 247466 247468 247474 247478 247480 247486 247490 247496 247504 266669
A. | 3 | B. | 4 | C. | 5 | D. | 6 |