3.甲乙两个班级均为40人,进行一门考试后,按学生考试成绩及格与不及格进行统计,甲班及格人数为32人,乙班及格人数为24人.
(Ⅰ)根据以上数据建立一个2×2的列联表;
(Ⅱ)试判断能否有99.5%的把握认为“考试成绩与班级有关”?
参考公式:χ2=$\frac{n({n}_{11}{n}_{22}-{n}_{12}{n}_{21})^{2}}{{n}_{1}+{n}_{2}+n+…2}$.
(Ⅰ)根据以上数据建立一个2×2的列联表;
(Ⅱ)试判断能否有99.5%的把握认为“考试成绩与班级有关”?
P(χ2≥k) | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
1.如图,E、F分别是三棱锥P-ABC的棱AP、BC的中点,PC=8,AB=6,EF=5,则异面直线AB与PC所成的角为( )
A. | 30° | B. | 60° | C. | 90° | D. | 120° |
17.已知定义在[0,+∞)上的函数f(x)满足f(x)=2f(x+2)恒成立,且当x∈[0,2)时,f(x)=-2x2+4x,设f(x)在[2n-2,2n)上的最大值为an(n∈N*),且{an}的前n项和为Sn,若不等式$\frac{t}{2n}≤{S_n}$对任意n∈N*恒成立,则t的取值范围是( )
A. | t≤5 | B. | t≤4 | C. | t≤3 | D. | t≤2 |
16.已知f(x)=$\left\{\begin{array}{l}{\frac{x}{2},x≥0}\\{-{x}^{2}+3x,x<0}\end{array}\right.$,则不等式f(x)<f(4)的解集为( )
A. | (4,+∞) | B. | (-∞,4) | C. | (-3,0) | D. | (-∞,-3) |
15.已知函数f(x)=$\left\{\begin{array}{l}{-{x}^{2}+\frac{1}{2}x(x<0)}\\{ln(x+1)(x≥0)}\end{array}\right.$,若函数y=f(x)-kx有3个零点,则实数k的取值范围为( )
0 247126 247134 247140 247144 247150 247152 247156 247162 247164 247170 247176 247180 247182 247186 247192 247194 247200 247204 247206 247210 247212 247216 247218 247220 247221 247222 247224 247225 247226 247228 247230 247234 247236 247240 247242 247246 247252 247254 247260 247264 247266 247270 247276 247282 247284 247290 247294 247296 247302 247306 247312 247320 266669
A. | $(0,\frac{1}{2})$ | B. | $(\frac{1}{2},1)$ | C. | (1,+∞) | D. | $(\frac{1}{4},1)$ |