题目内容

18.用数学归纳法证明不等式$\frac{1}{n+1}+\frac{1}{n+2}+\frac{1}{n+3}+…+\frac{1}{3n}>\frac{9}{10}(n∈N*且n>1)$时,第一步:不等式的左边是$\frac{1}{2+1}+\frac{1}{2+2}+\frac{1}{2+3}$+$\frac{1}{2+4}$.

分析 用数学归纳法证明不等式$\frac{1}{n+1}+\frac{1}{n+2}+\frac{1}{n+3}+…+\frac{1}{3n}>\frac{9}{10}(n∈N*且n>1)$时,第一步:不等式的左边是$\frac{1}{2+1}+\frac{1}{2+2}+\frac{1}{2+3}$+$\frac{1}{2+4}$.即可得出.

解答 解:用数学归纳法证明不等式$\frac{1}{n+1}+\frac{1}{n+2}+\frac{1}{n+3}+…+\frac{1}{3n}>\frac{9}{10}(n∈N*且n>1)$时,
第一步:不等式的左边是$\frac{1}{2+1}+\frac{1}{2+2}+\frac{1}{2+3}$+$\frac{1}{2+4}$.
故答案为:$\frac{1}{2+1}+\frac{1}{2+2}+\frac{1}{2+3}$+$\frac{1}{2+4}$.

点评 本题查克拉数学归纳法的应用,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网