3.在长方体ABCD-A1B1C1D1中,AB=BC=4,AA1=2,E,F分别是A1B1和B1C1的中点,则异面直线AE与BF所成的角.( )
A. | 30° | B. | 60° | C. | 90° | D. | 120° |
2.设某大学的女生体重y(kg)与身高x(cm)具有线性相关关系,根据一组样本数据(xi,yi),i∈N*,建立回归方程为$\widehat{y}$=0.85x-85.71,则下列结论不正确的是( )
A. | y与x具有正的线性相关关系 | |
B. | 回归直线经过样本点的中心($\overline{x}$,$\overline{y}$) | |
C. | 身高增加1cm,其体重约增加0.85kg | |
D. | 若身高为170cm,则其体重必为58.79kg |
20.在△ABC中,AB=$\sqrt{3}$,BC=2,∠A=$\frac{π}{2}$,|$\overrightarrow{BA}$-t$\overrightarrow{BC}$|≥|$\overrightarrow{AC}$|,则实数t的取值范围是( )
A. | [1,+∞) | B. | [$\frac{1}{2}$,1] | C. | (-∞,0]∪[1,+∞) | D. | (-∞,$\frac{1}{2}$]∪[1,+∞) |
18.观察下列各式:a1+b1+c1=2,a2+b2+c2=3,a3+b3+c3=5,a4+b4+c4=8,a5+b5+c5=13…,则a10+b10+c10=( )
A. | 89 | B. | 144 | C. | 233 | D. | 232 |
17.已知x,y的一组数据如下表
则由表中的数据算得的线性回归方程可能是( )
x | 2 | 3 | 4 | 5 | 6 |
y | 3 | 4 | 6 | 8 | 9 |
A. | y=2x+2 | B. | y=2x-1 | C. | y=-$\frac{3}{2}$x+12 | D. | y=$\frac{8}{5}$x-$\frac{2}{5}$ |
15.已知平面α的法向量为$\overrightarrow{n}$=(2,-2,4),$\overrightarrow{AB}$=(-3,1,2),点A不在α内,则直线AB与平面的位置关系为( )
A. | AB⊥α | B. | AB?α | C. | AB与α相交不垂直 | D. | AB∥α |
14.在直三棱柱A1B1C1-ABC中,∠BCA=90°,点E、F分别是A1B1、A1C1的中点,BC=CA=CC1,则BE与AF所成的角的余弦值是( )
0 247124 247132 247138 247142 247148 247150 247154 247160 247162 247168 247174 247178 247180 247184 247190 247192 247198 247202 247204 247208 247210 247214 247216 247218 247219 247220 247222 247223 247224 247226 247228 247232 247234 247238 247240 247244 247250 247252 247258 247262 247264 247268 247274 247280 247282 247288 247292 247294 247300 247304 247310 247318 266669
A. | $\frac{\sqrt{30}}{10}$ | B. | $\frac{1}{2}$ | C. | $\frac{\sqrt{30}}{15}$ | D. | $\frac{\sqrt{15}}{10}$ |