题目内容
15.已知平面α的法向量为$\overrightarrow{n}$=(2,-2,4),$\overrightarrow{AB}$=(-3,1,2),点A不在α内,则直线AB与平面的位置关系为( )A. | AB⊥α | B. | AB?α | C. | AB与α相交不垂直 | D. | AB∥α |
分析 由于$\overrightarrow{n}•\overrightarrow{AB}$=-6-2+8=0,点A不在α内,$\overrightarrow{n}⊥α$,即可得出.
解答 解:∵$\overrightarrow{n}•\overrightarrow{AB}$=-6-2+8=0,点A不在α内,$\overrightarrow{n}⊥α$,
∴AB∥α.
故选:D.
点评 本题考查了向量垂直与数量积的关系、线面位置关系,考查了推理能力与计算能力,属于中档题.
练习册系列答案
相关题目
18.若变量y与x之间的相关系数r=-0.9362,则变量y与x之间( )
A. | 不具有线性相关关系 | |
B. | 具有线性相关关系 | |
C. | 它们的线性相关关系还需要进一步确定 | |
D. | 不确定 |
20.在△ABC中,AB=$\sqrt{3}$,BC=2,∠A=$\frac{π}{2}$,|$\overrightarrow{BA}$-t$\overrightarrow{BC}$|≥|$\overrightarrow{AC}$|,则实数t的取值范围是( )
A. | [1,+∞) | B. | [$\frac{1}{2}$,1] | C. | (-∞,0]∪[1,+∞) | D. | (-∞,$\frac{1}{2}$]∪[1,+∞) |
7.已知一组观测值(xi,yi)作出散点图后确定具有线性关系,若对于$\stackrel{∧}{y}$=$\stackrel{∧}{b}x+\stackrel{∧}{a}$,求得$\stackrel{∧}{b}$=0.51,$\overline x=61.75$,$\overline y=38.14$,则回归方程为( )
A. | $\stackrel{∧}{y}$=0.51x+6.65 | B. | $\stackrel{∧}{y}$=6.65x+0.51 | C. | $\stackrel{∧}{y}$=0.51x+42.30 | D. | $\stackrel{∧}{y}$=42.30x+0.51 |
4.偏差是指个别测定值与测定的平均值之差,在成绩统计中,我们把某个同学的某科考试成绩与该科班平均分的差叫某科偏差,在某次考试成绩统计中,某老师为了对学生数学偏差x(单位:分)与物理偏差y(单位:分)之间的关系进行分析,随机挑选了8位同学,得到他们的两科成绩偏差数据如下:
(1)若x与y之间具有线性相关关系,求y关于x的线性回归方程;
(2)若该次考试该班数学平均分为120分,物理平均分为91.5分,试由(1)的结论预测数学成绩为128分的同学的物理成绩.
参考公式:$\widehat{b}=\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$.
学生序号 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
数学偏差x | 20 | 15 | 13 | 3 | 2 | -5 | -10 | -18 |
物理偏差y | 6.5 | 3.5 | 3.5 | 1.5 | 0.5 | -0.5 | -2.5 | -3.5 |
(2)若该次考试该班数学平均分为120分,物理平均分为91.5分,试由(1)的结论预测数学成绩为128分的同学的物理成绩.
参考公式:$\widehat{b}=\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$.