题目内容
18.观察下列各式:a1+b1+c1=2,a2+b2+c2=3,a3+b3+c3=5,a4+b4+c4=8,a5+b5+c5=13…,则a10+b10+c10=( )A. | 89 | B. | 144 | C. | 233 | D. | 232 |
分析 观察各式的值构成数列2,3,5,8,13,…,其规律:从第三项起,每项等于其前相邻两项的和,依次求出即可.
解答 解:∵a1+b1+c1=2,a2+b2+c2=3,a3+b3+c3=5,a4+b4+c4=8,a5+b5+c5=13…,
∴各式的值构成数列2,3,5,8,13,…,其规律:从第三项起,每项等于其前相邻两项的和,
∴所求值为数列中的第十项,数列为2,3,5,8,13,21,34,55,89,144,…,
∴第十项为144,则a10+b10+c10=144,
故选:B.
点评 本题考查的知识点是归纳推理,归纳推理的一般步骤是:(1)通过观察个别情况发现某些相同性质;(2)从已知的相同性质中推出一个明确表达的一般性命题(猜想),属于基础题.
练习册系列答案
相关题目
1.袋中有大小相同的4个红球,6个白球,每次从中摸取一球,每个球被取到的可能性相同,现不放回地取3个球,则在前两次取出的是白球的前提下,第三次取出红球的概率为( )
A. | $\frac{1}{2}$ | B. | $\frac{1}{3}$ | C. | $\frac{1}{4}$ | D. | $\frac{1}{6}$ |
6.已知函数f(x)=x2+ax+b(a、b∈R)的两个零点为x1、x2,并且0<x1<1<x2<2,则a2+b2-6b的取值范围是( )
A. | [-1,4) | B. | (-1,4) | C. | (1,4) | D. | [-4,1) |
13.函数y=sinxcosx的周期和最大值分别是( )
A. | π,$\frac{1}{2}$ | B. | 2π,$\frac{1}{2}$ | C. | π,2 | D. | 2π,2 |
3.在长方体ABCD-A1B1C1D1中,AB=BC=4,AA1=2,E,F分别是A1B1和B1C1的中点,则异面直线AE与BF所成的角.( )
A. | 30° | B. | 60° | C. | 90° | D. | 120° |
7.已知一组样本点(xi,yi),(其中i=1,2,3,…,30),变量x与y线性相关,且根据最小二乘法求得的回归方程是$\stackrel{∧}{y}$=$\stackrel{∧}{b}$x+$\stackrel{∧}{a}$,则下列说法正确的是( )
A. | 至少有一个样本点落在回归直线$\stackrel{∧}{y}$=$\stackrel{∧}{b}$x+$\stackrel{∧}{a}$上 | |
B. | 若$\stackrel{∧}{y}$=$\stackrel{∧}{b}$x+$\stackrel{∧}{a}$斜率$\stackrel{∧}{b}$>0,则变量x与y正相关 | |
C. | 对所有的解释变量xi(i=1,2,3,…,30),$\stackrel{∧}{b}$xi+$\stackrel{∧}{a}$的值与yi有误差 | |
D. | 若所有样本点都在$\stackrel{∧}{y}$=$\stackrel{∧}{b}$x+$\stackrel{∧}{a}$上,则变量间的相关系数为1 |