7.已知在△ABC中,∠A、∠B、∠C所对的边是a、b、c,$\overrightarrow{GA}$+$\overrightarrow{GB}$+$\overrightarrow{GC}$=$\overrightarrow{0}$且$\overrightarrow{GA}$•$\overrightarrow{GB}$=0,若(tanA+tanB)•tanC=mtanAtanB,则m的值为( )
A. | $\frac{1}{2}$ | B. | $\frac{1}{3}$ | C. | $\frac{1}{4}$ | D. | $\frac{1}{5}$ |
5.甲乙两个学校高三年级分别有1100人,1000人,为了了解两个学校全体高三年级学生在该地区二模考试的数学成绩情况,采用分层抽样方法从两个学校一共抽取了105名学生的数学成绩,并作出了频数分布统计表如下:
甲校:
乙校:
(Ⅰ)计算x,y的值;
(Ⅱ)若规定考试成绩在[120,150]内为优秀,请分别估计两个学校数学成绩的优秀率;
(Ⅲ)由以上统计数据填写右面2×2列联表,并判断是否有97.5%的把握认为两个学校的数学成绩有差异.
附:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$
甲校:
分组 | [70,80) | [80,90) | [90,100) | [100,110) |
频数 | 2 | 3 | 10 | 15 |
分组 | [110,120) | [120,130) | [130,140) | [140,150] |
频数 | 15 | x | 3 | 1 |
分组 | [70,80) | [80,90) | [90,100) | [100,110) |
频数 | 1 | 2 | 9 | 8 |
分组 | [110,120) | [120,130) | [130,140) | [140,150] |
频数 | 10 | 10 | y | 3 |
(Ⅱ)若规定考试成绩在[120,150]内为优秀,请分别估计两个学校数学成绩的优秀率;
(Ⅲ)由以上统计数据填写右面2×2列联表,并判断是否有97.5%的把握认为两个学校的数学成绩有差异.
甲校 | 乙校 | 总计 | |
优秀 | |||
非优秀 | |||
总计 |
P(K2≥k) | 0.10 | 0.05 | 0.025 |
k | 2.706 | 3.841 | 5.024 |
18.已知函数f(x)的定义域为实数R,f′(x)是其导函数,对任意实数x有f(x)+xf′(x)>0,则当a>b时,下列不等式成立的是( )
0 246691 246699 246705 246709 246715 246717 246721 246727 246729 246735 246741 246745 246747 246751 246757 246759 246765 246769 246771 246775 246777 246781 246783 246785 246786 246787 246789 246790 246791 246793 246795 246799 246801 246805 246807 246811 246817 246819 246825 246829 246831 246835 246841 246847 246849 246855 246859 246861 246867 246871 246877 246885 266669
A. | af(b)>bf(a) | B. | af(a)>bf(b) | C. | bf(a)>af(b) | D. | bf(b)>af(a) |