13.已知θ∈(0,π),且sin($\frac{π}{4}$-θ)=$\frac{\sqrt{2}}{10}$,则tan2θ=( )
A. | $\frac{4}{3}$ | B. | $\frac{3}{4}$ | C. | $\frac{24}{7}$ | D. | -$\frac{24}{7}$ |
11.双曲线r:$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$(a>0,b>0)的左顶点为C,A为双曲线第一象限上的点,直线OA交双曲线于另一点B,双曲线左焦点为F,连结AF交BC延长线于D点.若$\overrightarrow{DB}$=3$\overrightarrow{DC}$,则双曲线r的离心率等于( )
A. | 2 | B. | $\sqrt{2}$ | C. | 3 | D. | $\sqrt{3}$ |
7.直三棱锥ABC-A1B1C1中,∠BCA=90°,M,N分别是A1B1,A1C1的中点,BC=CA=CC1,则BM与AN所成角的余弦值为( )
A. | $\frac{1}{10}$ | B. | $\frac{2}{5}$ | C. | $\frac{\sqrt{2}}{2}$ | D. | $\frac{\sqrt{30}}{10}$ |
6.设函数f(x)=x2-xlnx+2.
(1)求函数g(x)=f′(x)的极值;
(2)若存在区间[a,b)⊆[$\frac{1}{2}$,+∞),使[a,b]上的值域是[ka,kb],求k的取值范围.
(1)求函数g(x)=f′(x)的极值;
(2)若存在区间[a,b)⊆[$\frac{1}{2}$,+∞),使[a,b]上的值域是[ka,kb],求k的取值范围.
5.在正方体ABCD-A1B1C1D1中,设点P在线段CC1上,直线BP与平面A1BD所成的角为α,则sinα的取值范围是( )
0 246265 246273 246279 246283 246289 246291 246295 246301 246303 246309 246315 246319 246321 246325 246331 246333 246339 246343 246345 246349 246351 246355 246357 246359 246360 246361 246363 246364 246365 246367 246369 246373 246375 246379 246381 246385 246391 246393 246399 246403 246405 246409 246415 246421 246423 246429 246433 246435 246441 246445 246451 246459 266669
A. | [$\frac{{\sqrt{3}}}{3}$,$\frac{{\sqrt{6}}}{3}$] | B. | [$\frac{\sqrt{6}}{3}$,1] | C. | [$\frac{\sqrt{6}}{3}$,$\frac{2\sqrt{2}}{3}$] | D. | [$\frac{2\sqrt{2}}{2}$,1] |