题目内容

4.数列{an}是公差不为零的等差数列,a5=6.数列{bn}满足:b1=3,bn+1=b1b2b3…bn+1.
(Ⅰ)当n≥2时,求证:$\frac{{{b_{n+1}}-1}}{{{b_n}-1}}$=bn
(Ⅱ)当a3>1且a3∈N*时,a3,a5,ak1,ak2,…,akn,…为等比数列.(i)求a3;(ii)当a3取最小值时,求证:$\frac{1}{b_1}$+$\frac{1}{b_2}$+$\frac{1}{b_3}$+…+$\frac{1}{b_n}$>4(${\frac{1}{{{a_{k_1}}-1}}$+$\frac{1}{{{a_{k_2}}-1}}$+$\frac{1}{{{a_{k_3}}-1}}$+…+$\frac{1}{{{a_{k_n}}-1}}}$).

分析 (Ⅰ)由bn+1=b1b2b3…bn+1,可得bn+1-1=b1b2b3…bn,再写一式,两式相除,即可证明结论;
(Ⅱ)(i)确定akn=a3+(kn-3)•$\frac{6-{a}_{3}}{2}$,kn=5+2[$(\frac{6}{{a}_{3}})^{n}$+$(\frac{6}{{a}_{3}})^{n-1}$+…+$\frac{6}{{a}_{3}}$],即可求a3;(ii)a3=2时,akn=2×3n+1,$\frac{1}{{a}_{{k}_{n}}-1}$=$\frac{1}{2×{3}^{n+1}-1}$<$(\frac{1}{3})^{n+1}$,再用放缩法,即可证明结论.

解答 (Ⅰ)证明:∵bn+1=b1b2b3…bn+1,
∴bn+1-1=b1b2b3…bn
∴bn-1=b1b2b3…bn-1,(n≥2),
两式相除可得:$\frac{{{b_{n+1}}-1}}{{{b_n}-1}}$=bn
(Ⅱ)解:(i)∵数列{an}是公差不为零的等差数列,a5=6,
∴akn=a3+(kn-3)•$\frac{6-{a}_{3}}{2}$.
∵akn=a3•$(\frac{{a}_{5}}{{a}_{3}})^{n+1}$=a3•$(\frac{6}{{a}_{3}})^{n+1}$,
∴a3+(kn-3)•$\frac{6-{a}_{3}}{2}$=a3•$(\frac{6}{{a}_{3}})^{n+1}$,
∴kn=5+2[$(\frac{6}{{a}_{3}})^{n}$+$(\frac{6}{{a}_{3}})^{n-1}$+…+$\frac{6}{{a}_{3}}$]
n=1时,k1=5+$\frac{12}{{a}_{3}}$,
∵a3>1且a3∈N*
∴a3=2或3或4或6或12.
n=2时,k2=5+2×[$(\frac{6}{{a}_{3}})^{2}$+$\frac{6}{{a}_{3}}$],∴a3=2或3或6,
∵a3≠6,∴a3=2或3;
(ii)a3=2时,akn=2×3n+1
∴$\frac{1}{{a}_{{k}_{n}}-1}$=$\frac{1}{2×{3}^{n+1}-1}$<$(\frac{1}{3})^{n+1}$,
∴${\frac{1}{{{a_{k_1}}-1}}$+$\frac{1}{{{a_{k_2}}-1}}$+$\frac{1}{{{a_{k_3}}-1}}$+…+$\frac{1}{{{a_{k_n}}-1}}}$<$(\frac{1}{3})^{2}+(\frac{1}{3})^{3}+…+(\frac{1}{3})^{n+1}$=$\frac{1}{6}(1-\frac{1}{{3}^{n}})$
∴4(${\frac{1}{{{a_{k_1}}-1}}$+$\frac{1}{{{a_{k_2}}-1}}$+$\frac{1}{{{a_{k_3}}-1}}$+…+$\frac{1}{{{a_{k_n}}-1}}}$)<$\frac{2}{3}(1-\frac{1}{{3}^{n}})$.
由(Ⅰ)知$\frac{{{b_{n+1}}-1}}{{{b_n}-1}}$=bn
∴$\frac{1}{{b}_{n}}$=$\frac{1}{{b}_{n}-1}$-$\frac{1}{{b}_{n+1}-1}$(n≥2),
∴$\frac{1}{b_1}$+$\frac{1}{b_2}$+$\frac{1}{b_3}$+…+$\frac{1}{b_n}$=$\frac{1}{b_1}$+$\frac{1}{b_2}$+$\frac{1}{{b}_{3}-1}$-$\frac{1}{{b}_{n+1}-1}$=$\frac{1}{3}$+$\frac{1}{4}$+$\frac{1}{12}$-$\frac{1}{{b}_{1}{b}_{2}…{b}_{n}}$≥$\frac{2}{3}(1-\frac{1}{{3}^{n}})$(n≥3).
n=1时,$\frac{1}{b_1}$=$\frac{1}{3}$,$4×\frac{1}{{a}_{{k}_{1}}-1}$=$\frac{4}{17}$,∴$\frac{1}{b_1}$>$\frac{4}{17}$,
n=2时,$\frac{1}{b_1}$+$\frac{1}{b_2}$=$\frac{7}{12}$,4×($\frac{1}{{a}_{{k}_{1}}-1}$+$\frac{1}{{a}_{{k}_{2}}-1}$)=4×($\frac{1}{17}$+$\frac{1}{53}$)<4×($\frac{1}{17}$+$\frac{1}{51}$)=$\frac{16}{51}$
∴$\frac{1}{b_1}$+$\frac{1}{b_2}$>4×($\frac{1}{{a}_{{k}_{1}}-1}$+$\frac{1}{{a}_{{k}_{2}}-1}$),
∴$\frac{1}{b_1}$+$\frac{1}{b_2}$+$\frac{1}{b_3}$+…+$\frac{1}{b_n}$>4(${\frac{1}{{{a_{k_1}}-1}}$+$\frac{1}{{{a_{k_2}}-1}}$+$\frac{1}{{{a_{k_3}}-1}}$+…+$\frac{1}{{{a_{k_n}}-1}}}$).

点评 本题考查等差数列,考查数列与不等式的综合,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网