题目内容
4.数列{an}是公差不为零的等差数列,a5=6.数列{bn}满足:b1=3,bn+1=b1b2b3…bn+1.(Ⅰ)当n≥2时,求证:$\frac{{{b_{n+1}}-1}}{{{b_n}-1}}$=bn;
(Ⅱ)当a3>1且a3∈N*时,a3,a5,ak1,ak2,…,akn,…为等比数列.(i)求a3;(ii)当a3取最小值时,求证:$\frac{1}{b_1}$+$\frac{1}{b_2}$+$\frac{1}{b_3}$+…+$\frac{1}{b_n}$>4(${\frac{1}{{{a_{k_1}}-1}}$+$\frac{1}{{{a_{k_2}}-1}}$+$\frac{1}{{{a_{k_3}}-1}}$+…+$\frac{1}{{{a_{k_n}}-1}}}$).
分析 (Ⅰ)由bn+1=b1b2b3…bn+1,可得bn+1-1=b1b2b3…bn,再写一式,两式相除,即可证明结论;
(Ⅱ)(i)确定akn=a3+(kn-3)•$\frac{6-{a}_{3}}{2}$,kn=5+2[$(\frac{6}{{a}_{3}})^{n}$+$(\frac{6}{{a}_{3}})^{n-1}$+…+$\frac{6}{{a}_{3}}$],即可求a3;(ii)a3=2时,akn=2×3n+1,$\frac{1}{{a}_{{k}_{n}}-1}$=$\frac{1}{2×{3}^{n+1}-1}$<$(\frac{1}{3})^{n+1}$,再用放缩法,即可证明结论.
解答 (Ⅰ)证明:∵bn+1=b1b2b3…bn+1,
∴bn+1-1=b1b2b3…bn,
∴bn-1=b1b2b3…bn-1,(n≥2),
两式相除可得:$\frac{{{b_{n+1}}-1}}{{{b_n}-1}}$=bn;
(Ⅱ)解:(i)∵数列{an}是公差不为零的等差数列,a5=6,
∴akn=a3+(kn-3)•$\frac{6-{a}_{3}}{2}$.
∵akn=a3•$(\frac{{a}_{5}}{{a}_{3}})^{n+1}$=a3•$(\frac{6}{{a}_{3}})^{n+1}$,
∴a3+(kn-3)•$\frac{6-{a}_{3}}{2}$=a3•$(\frac{6}{{a}_{3}})^{n+1}$,
∴kn=5+2[$(\frac{6}{{a}_{3}})^{n}$+$(\frac{6}{{a}_{3}})^{n-1}$+…+$\frac{6}{{a}_{3}}$]
n=1时,k1=5+$\frac{12}{{a}_{3}}$,
∵a3>1且a3∈N*,
∴a3=2或3或4或6或12.
n=2时,k2=5+2×[$(\frac{6}{{a}_{3}})^{2}$+$\frac{6}{{a}_{3}}$],∴a3=2或3或6,
∵a3≠6,∴a3=2或3;
(ii)a3=2时,akn=2×3n+1,
∴$\frac{1}{{a}_{{k}_{n}}-1}$=$\frac{1}{2×{3}^{n+1}-1}$<$(\frac{1}{3})^{n+1}$,
∴${\frac{1}{{{a_{k_1}}-1}}$+$\frac{1}{{{a_{k_2}}-1}}$+$\frac{1}{{{a_{k_3}}-1}}$+…+$\frac{1}{{{a_{k_n}}-1}}}$<$(\frac{1}{3})^{2}+(\frac{1}{3})^{3}+…+(\frac{1}{3})^{n+1}$=$\frac{1}{6}(1-\frac{1}{{3}^{n}})$
∴4(${\frac{1}{{{a_{k_1}}-1}}$+$\frac{1}{{{a_{k_2}}-1}}$+$\frac{1}{{{a_{k_3}}-1}}$+…+$\frac{1}{{{a_{k_n}}-1}}}$)<$\frac{2}{3}(1-\frac{1}{{3}^{n}})$.
由(Ⅰ)知$\frac{{{b_{n+1}}-1}}{{{b_n}-1}}$=bn,
∴$\frac{1}{{b}_{n}}$=$\frac{1}{{b}_{n}-1}$-$\frac{1}{{b}_{n+1}-1}$(n≥2),
∴$\frac{1}{b_1}$+$\frac{1}{b_2}$+$\frac{1}{b_3}$+…+$\frac{1}{b_n}$=$\frac{1}{b_1}$+$\frac{1}{b_2}$+$\frac{1}{{b}_{3}-1}$-$\frac{1}{{b}_{n+1}-1}$=$\frac{1}{3}$+$\frac{1}{4}$+$\frac{1}{12}$-$\frac{1}{{b}_{1}{b}_{2}…{b}_{n}}$≥$\frac{2}{3}(1-\frac{1}{{3}^{n}})$(n≥3).
n=1时,$\frac{1}{b_1}$=$\frac{1}{3}$,$4×\frac{1}{{a}_{{k}_{1}}-1}$=$\frac{4}{17}$,∴$\frac{1}{b_1}$>$\frac{4}{17}$,
n=2时,$\frac{1}{b_1}$+$\frac{1}{b_2}$=$\frac{7}{12}$,4×($\frac{1}{{a}_{{k}_{1}}-1}$+$\frac{1}{{a}_{{k}_{2}}-1}$)=4×($\frac{1}{17}$+$\frac{1}{53}$)<4×($\frac{1}{17}$+$\frac{1}{51}$)=$\frac{16}{51}$
∴$\frac{1}{b_1}$+$\frac{1}{b_2}$>4×($\frac{1}{{a}_{{k}_{1}}-1}$+$\frac{1}{{a}_{{k}_{2}}-1}$),
∴$\frac{1}{b_1}$+$\frac{1}{b_2}$+$\frac{1}{b_3}$+…+$\frac{1}{b_n}$>4(${\frac{1}{{{a_{k_1}}-1}}$+$\frac{1}{{{a_{k_2}}-1}}$+$\frac{1}{{{a_{k_3}}-1}}$+…+$\frac{1}{{{a_{k_n}}-1}}}$).
点评 本题考查等差数列,考查数列与不等式的综合,考查学生分析解决问题的能力,属于中档题.
A. | h(x)关于(1,0)对称 | B. | h(x)关于(-1,0)对称 | C. | h(x)关于x=1对称 | D. | h(x)关于x=-1对称 |
A. | $\frac{x^2}{144}+\frac{y^2}{108}=1$ | B. | $\frac{x^2}{100}+\frac{y^2}{75}=1$ | C. | $\frac{x^2}{36}+\frac{y^2}{27}=1$ | D. | $\frac{x^2}{16}+\frac{y^2}{12}=1$ |
A. | 2 | B. | -2i | C. | -4 | D. | 2i |
A. | 不存在x∈R,sinx≤1 | B. | 存在x∈R,sinx≤1 | ||
C. | 存在x∈R,sinx>1 | D. | 对任意的x∈R,sinx>1 |
A. | 函数f(x)的最小正周期为2π | |
B. | f(x)的最大值为$\sqrt{2}$ | |
C. | f(x)的图象关于直线x=-$\frac{π}{8}$对称 | |
D. | 将f(x)的图象向右平移$\frac{π}{8}$,再向下平移$\frac{1}{2}$个单位长度后会得到一个奇函数的图象 |