题目内容
【题目】已知函数.,且.
(1)求函数的单调区间;
(2)若函数与函数在公共点处有相同的切线,且在上恒成立.
(i)求和的值;(为函数的导函数)
(ii)求实数n的取值范围.
【答案】(1) 单调递增区间为,单调递减区间为和.(2) (i)(ii)
【解析】
(1)利用导数证明单调性即可;
(2)(i)根据点P是与的公共点,以及根据导数的几何意义列出方程组,求解即可得到和的值;
(ii)由,以及题设条件,判断是的极小值点,由,列出方程,构造函数,,利用导数得到其最值,即可得到实数n的取值范围.
解:(1)∵
又因为,所以.
令,则,
∴;
令,则,
∴或
∴的单调递增区间为,单调递减区间为和.
(2)(i)∵与在公共点处有相同的切线
∴,∴.
(ii)∵在恒成立,且.
是的极值点,若是的极大值点,由于,则不满足在上恒成立.
∴是的极小值点,由(1)知
∴
∴,
令,,∴,
令则,.∵,,.
∴的值域为
所以实数的取值范围是
【题目】2019年双十一落下帷幕,天猫交易额定格在268(单位:十亿元)人民币(下同),再创新高,比去年218(十亿元)多了50(十亿元),这些数字的背后,除了是消费者买买买的表现,更是购物车里中国新消费的奇迹,为了研究历年销售额的变化趋势,一机构统计了2010年到2019年天猫双十一的销售额数据(单位:十亿元).绘制如下表1:
表1
年份 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 |
编号 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
销售额 | 0.9 | 8.7 | 22.4 | 41 | 65 | 94 | 132.5 | 172.5 | 218 | 268 |
根据以上数据绘制散点图,如图所示.
把销售超过100(十亿元)的年份叫“畅销年”,把销售额超过200(十亿元)的年份叫“狂欢年”,从2010年到2019年这十年的“畅销年”中任取2个,求至少取到一个“狂欢年”的概率.
参考公式:对于一组数据,,…,,其回归直线的斜率和截距的最小二乘估计公式分别为,.