题目内容

【题目】已知函数f(x)= x3﹣(a﹣1)x2+b2x,其中a∈{1,2,3,4},b∈{1,2,3},则函数f(x)在R上是增函数的概率为(
A.
B.
C.
D.

【答案】D
【解析】解:∵f(x)= x3﹣(a﹣1)x2+b2x, ∴f′(x)=x2﹣2(a﹣1)x+b2
要使函数f(x)在R上是增函数,需f′(x)=x2﹣2(a﹣1)x+b2≥0,
即△=4(a﹣1)2﹣4b2≤0,即a﹣1≤b,
∵a∈{1,2,3,4},b∈{1,2,3},
∴总的基本事件为(1,1),(1,2),(1,3),(2,1),(2,2),
(2,3),(3,1),(3,2),(3,3),(4,1),(4,2),(4,3)共12个,
其中满足a﹣1≤b的有(1,1),(1,2),(1,3),(2,1),(2,2),
(2,3),(3,2),(3,3),(4,3)共9个,
∴所求概率为P= =
故选:D.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网