题目内容

设f(x)是定义在R上的增函数,且对于任意的x都有f(1-x)+f(1+x)=0恒成立.如果实数m、n满足不等式组那么m2+n2的取值范围是________.
(13,49)
由f(1-x)+f(1+x)=0得,f(n2-8n)=f[(n2-8n-1)+1]=-f[1-(n2-8n-1)]=-f(-n2+8n+2),所以f(m2-6m+23)<-f(n2-8n)=f(-n2+8n+2),又f(x)是定义在R上的增函数,所以m2-6m+23<-n2+8n+2,即为(m-3)2+(n-4)2<4,且m>3,所以(m,n)在以(3,4)为圆心,半径为2的右半个圆内,当为点(3,2)时,m2+n2=13,圆心(3,4)到原点的距离为5,此时
m2+n2=(5+2)2=49,所以m2+n2的取值范围是(13,49).
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网