题目内容
【题目】某舆情机构为了解人们对某事件的关注度,随机抽取了人进行调查,其中女性中对该事件关注的占,而男性有人表示对该事件没有关注.
关注 | 没关注 | 合计 | |
男 | |||
女 | |||
合计 |
(1)根据以上数据补全列联表;
(2)能否有的把握认为“对事件是否关注与性别有关”?
(3)已知在被调查的女性中有名大学生,这其中有名对此事关注.现在从这名女大学生中随机抽取人,求至少有人对此事关注的概率.
附表:
【答案】(1)见解析(2)有的把握认为“对事件是否关注与性别有关”(3)
【解析】分析:(1)由题意,补全列联表。
(2)由列联表,根据求得,结合临界值表即可判断把握性。
(3)根据独立事件的概率,求得3人中至少有2人关注此事的概率即可。
详解:(1)根据已知数据得到如下列联表
关注 | 没关注 | 合计 | |
男 | |||
女 | |||
合计 |
(2)根据列联表中的数据,得到的观测值
.
所以有的把握认为“对事件是否关注与性别有关”.
(3)抽取的人中至少有人对此事关注的概率为.
所以,至少有人对此事关注的概率为.
【题目】某大学生参加社会实践活动,对某公司1月份至6月份销售某种配件的销售量及销售单价进行了调查,销售单价x和销售量y之间的一组数据如下表所示:
月份 | 1 | 2 | 3 | 4 | 5 | 6 |
销售单价(元) | 9 | 9.5 | 10 | 10.5 | 11 | 8 |
销售量(件) | 11 | 10 | 8 | 6 | 5 | 14.2 |
(1)根据1至5月份的数据,求出y关于x的回归直线方程;
(2)若由回归直线方程得到的估计数据与剩下的检验数据的误差不超过0.5元,则认为所得到的回归直线方程是理想的,试问(1)中所得到的回归直线方程是否理想?
(3)预计在今后的销售中,销售量与销售单价仍然服从(1)中的关系,若该种机器配件的成本是2.5元/件,那么该配件的销售单价应定为多少元才能获得最大利润?(注:利润=销售收入-成本).
参考公式:回归直线方程,其中,
【题目】某舆情机构为了解人们对某事件的关注度,随机抽取了人进行调查,其中女性中对该事件关注的占,而男性有人表示对该事件没有关注.
关注 | 没关注 | 合计 | |
男 | |||
女 | |||
合计 |
(1)根据以上数据补全列联表;
(2)能否有的把握认为“对事件是否关注与性别有关”?
(3)已知在被调查的女性中有名大学生,这其中有名对此事关注.现在从这名女大学生中随机抽取人,求至少有人对此事关注的概率.
附表: