题目内容

【题目】在平面直角坐标系xOy中,直线l: (t为参数),与曲线C: (k为参数)交于A,B两点,求线段AB的长.

【答案】解:(方法一)直线l的参数方程化为普通方程得4x﹣3y=4, 将曲线C的参数方程化为普通方程得y2=4x.
联立方程组 解得 ,或
所以A(4,4),B( ,﹣1).
所以AB═
(方法二)将曲线C的参数方程化为普通方程得y2=4x.
直线l的参数方程代入抛物线C的方程得 t)2=4(1+ ),即4t2﹣15t﹣25=0,
所以 t1+t2= ,t1t2=﹣
所以AB=|t1﹣t2|= =
【解析】方法一:直线l的参数方程化为普通方程得4x﹣3y=4,将曲线C的参数方程化为普通方程得y2=4x.联立求出交点坐标,利用两点之间的距离公式即可得出.方法二:将曲线C的参数方程化为普通方程得y2=4x. 直线l的参数方程代入抛物线C的方程得 4t2﹣15t﹣25=0,利用AB=|t1﹣t2|= 即可得出.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网