题目内容
7.设a,b>0,a+b=5,则$\sqrt{a+1}$+$\sqrt{b+3}$的最大值为3$\sqrt{2}$.分析 利用柯西不等式,即可求出$\sqrt{a+1}+\sqrt{b+3}$的最大值.
解答 解:由题意,($\sqrt{a+1}+\sqrt{b+3}$)2≤(1+1)(a+1+b+3)=18,
∴$\sqrt{a+1}+\sqrt{b+3}$的最大值为3$\sqrt{2}$,
故答案为:3$\sqrt{2}$.
点评 本题考查函数的最值,考查柯西不等式的运用,正确运用柯西不等式是关键.
练习册系列答案
相关题目
17.某超市随机选取1000位顾客,记录了他们购买甲、乙、丙、丁四种商品的情况,整理成如下统计表,其中“√”表示购买,“×”表示未购买.
(1)估计顾客同时购买乙和丙的概率;
(2)估计顾客在甲、乙、丙、丁中同时购买3种商品的概率;
(3)如果顾客购买了甲,则该顾客同时购买乙、丙、丁中哪种商品的可能性最大?
甲 | 乙 | 丙 | 丁 | |
100 | √ | × | √ | √ |
217 | × | √ | × | √ |
200 | √ | √ | √ | × |
300 | √ | × | √ | × |
85 | √ | × | × | × |
98 | × | √ | × | × |
(2)估计顾客在甲、乙、丙、丁中同时购买3种商品的概率;
(3)如果顾客购买了甲,则该顾客同时购买乙、丙、丁中哪种商品的可能性最大?
18.某几何体的三视图如图所示,则该几何体的体积为( )
A. | $\frac{1}{3}+π$ | B. | $\frac{2}{3}+π$ | C. | $\frac{1}{3}+2π$ | D. | $\frac{2}{3}+2π$ |
15.已知集合A={1,2,3},B={1,3},则A∩B=( )
A. | {2} | B. | {1,2} | C. | {1,3} | D. | {1,2,3} |
2.设双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)的右焦点是F,左、右顶点分别是A1,A2,过F做A1A2的垂线与双曲线交于B,C两点,若A1B⊥A2C,则该双曲线的渐近线的斜率为( )
A. | ±$\frac{1}{2}$ | B. | ±$\frac{{\sqrt{2}}}{2}$ | C. | ±1 | D. | ±$\sqrt{2}$ |
19.设实数x,y满足$\left\{\begin{array}{l}2x+y≤10\\ x+2y≤14\\ x+y≥6\end{array}\right.$,则xy的最大值为( )
A. | $\frac{25}{2}$ | B. | $\frac{49}{2}$ | C. | 12 | D. | 16 |
16.随机抽取一个年份,对西安市该年4月份的天气情况进行统计,结果如下:
(Ⅰ)在4月份任取一天,估计西安市在该天不下雨的概率;
(Ⅱ)西安市某学校拟从4月份的一个晴天开始举行连续2天的运动会,估计运动会期间不下雨的概率.
(Ⅰ)在4月份任取一天,估计西安市在该天不下雨的概率;
(Ⅱ)西安市某学校拟从4月份的一个晴天开始举行连续2天的运动会,估计运动会期间不下雨的概率.
日期 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
天气 | 晴 | 雨 | 阴 | 阴 | 阴 | 雨 | 阴 | 晴 | 晴 | 晴 | 阴 | 晴 | 晴 | 晴 | 晴 |
日期 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 |
天气 | 晴 | 阴 | 雨 | 阴 | 阴 | 晴 | 阴 | 晴 | 晴 | 晴 | 阴 | 晴 | 晴 | 晴 | 雨 |