题目内容

12.已知函数f(x)=ax3+x2(a∈R)在x=$-\frac{4}{3}$处取得极值.
(Ⅰ)确定a的值;
(Ⅱ)若g(x)=f(x)ex,讨论g(x)的单调性.

分析 (Ⅰ)求导数,利用f(x)=ax3+x2(a∈R)在x=$-\frac{4}{3}$处取得极值,可得f′(-$\frac{4}{3}$)=0,即可确定a的值;
(Ⅱ)由(Ⅰ)得g(x)=($\frac{1}{2}$x3+x2)ex,利用导数的正负可得g(x)的单调性.

解答 解:(Ⅰ)对f(x)求导得f′(x)=3ax2+2x.
∵f(x)=ax3+x2(a∈R)在x=$-\frac{4}{3}$处取得极值,
∴f′(-$\frac{4}{3}$)=0,
∴3a•$\frac{16}{9}$+2•(-$\frac{4}{3}$)=0,
∴a=$\frac{1}{2}$;
(Ⅱ)由(Ⅰ)得g(x)=($\frac{1}{2}$x3+x2)ex
∴g′(x)=($\frac{3}{2}$x2+2x)ex+($\frac{1}{2}$x3+x2)ex=$\frac{1}{2}$x(x+1)(x+4)ex
令g′(x)=0,解得x=0,x=-1或x=-4,
当x<-4时,g′(x)<0,故g(x)为减函数;
当-4<x<-1时,g′(x)>0,故g(x)为增函数;
当-1<x<0时,g′(x)<0,故g(x)为减函数;
当x>0时,g′(x)>0,故g(x)为增函数;
综上知g(x)在(-∞,-4)和(-1,0)内为减函数,在(-4,-1)和(0,+∞)内为增函数.

点评 本题考查导数的运用:求单调区间和极值,考查分类讨论的思想方法,以及函数和方程的转化思想,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网