题目内容
【题目】已知,,其中.
(Ⅰ)当时,求函数的单调区间;
(Ⅱ)若恒成立,求的最大值.
【答案】(Ⅰ)在上单调递减,在上单调递增;(Ⅱ).
【解析】
(Ⅰ)求函数导数,利用导数可研究函数的单调性;
(Ⅱ)由条件可得 在上恒成立, 求导得,分别讨论,和三种情况,研究的最小值的取值情况,从而即可得解.
(Ⅰ)时,,定义域是全体实数,求导得,
令,所以在上单调递减,在上单调递增
(Ⅱ)令 在上恒成立,则 在上恒成立
求导得.
若,显然可以任意小,不符合题意.
若,则最大也只能取0.
当时,令 ,
于是在上单调递减,在单调递增,在取唯一的极小值也是最小值
,
令,则,
令.
所以在上单调递增,在单调递减,
在取唯一极大值也是最大值,此时,,所以的最大值等于.
备注一:结合图象,指数函数在直线的上方,斜率显然,再讨论的情况.
备注二:考虑到 在上恒成立,令即得.取,
证明在上恒成立也给满分.
练习册系列答案
相关题目
【题目】某二手交易市场对某型号的二手汽车的使用年数()与销售价格(单位:万元/辆)进行整理,得到如下的对应数据:
使用年数 | 2 | 4 | 6 | 8 | 10 |
销售价格 | 16 | 13 | 9.5 | 7 | 4.5 |
(I)试求关于的回归直线方程.
(参考公式:,)
(II)已知每辆该型号汽车的收购价格为万元,根据(I)中所求的回归方程,预测为何值时,销售一辆该型号汽车所获得的利润最大?(利润=销售价格-收购价格)