题目内容
【题目】已知,如图,在直二面角中,四边形是边长为的正方形,,且.
(Ⅰ)求证:平面;
(Ⅱ)求二面角的余弦值;
(Ⅲ)在线段(不包含端点)上是否存在点,使得与平面所成的角为;若存在,写出的值,若不存在,说明理由.
【答案】(Ⅰ)见解析;(Ⅱ);(Ⅲ).
【解析】试题分析:
(Ⅰ)由面面垂直的性质定理可得,结合,可得平面.
(Ⅱ)以为原点,以的方向分别为轴,轴的正方向,建立空间直角坐标系,计算可得平面的法向量,设平面的法向量,计算可得二面角的余弦值为.
(Ⅲ)设存在点满足题意,设,则,据此得到关于的方程,解方程可得.则在线段上存在点满足题意.
试题解析:
(Ⅰ)证明:因为在直二面角中,四边形是正方形,
所以,则平面,
又因为平面,所以,
因为,即,
所以平面.
(Ⅱ)以为原点,以的方向分别为轴,轴的正方向,建立空间直角坐标系
则,,,.
平面的法向量,设平面的法向量,
因为,,
所以即
令,解得,则,
所以二面角的余弦值为.
(Ⅲ)设存在点,使得与平面所成的角为,且,
则,,则有,
解得(舍).
所以在线段上存在点,使得与平面所成的角为,.
练习册系列答案
相关题目
【题目】我校对高二600名学生进行了一次知识测试,并从中抽取了部分学生的成绩(满分100分)作为样本,绘制了下面尚未完成的频率分布表和频率分布直方图.
分 组 | 频 数 | 频 率 |
[50,60) | 2 | 0.04 |
[60,70) | 8 | 0.16 |
[70,80) | 10 |
|
[80,90) |
|
|
[90,100] | 14 | 0.28 |
合 计 |
| 1.00 |
(1)填写频率分布表中的空格,补全频率分布直方图,并标出每个小矩形对应的纵轴数据;
(2)请你估算该年级学生成绩的中位数;
(3)如果用分层抽样的方法从样本分数在[60,70)和[80,90)的人中共抽取6人,再从6人中选2人,求2人分数都在[80,90)的概率.