题目内容
【题目】有一座大桥既是交通拥挤地段,又是事故多发地段,为了保证安全,交通部门规定:大桥上的车距与车速和车长的关系满足为正的常数).假定车身长为,当车速为时,车距为个车身长.
(1)写出车距关于车速的函数关系式;
(2)应规定怎样的车速,才能使大桥上每小时通过的车辆最多?
【答案】(1)d=0.0024v2+2;(2)当车速为50 km/h时,大桥上每小时通过的车辆最多.
【解析】试题分析:(1)根据当车速 ,车距为 个车身长,建立等式关系,求出 的值,即可求出车距 关于车速 的函数关系式;(2)设每小时通过的车辆为 ,每小时内通过汽车的数量为最大,只须 最小,将 代入,然后利用基本求出最值,即可求出所求.
试题解析:(1) 由题意,当v=60时,d=2.66l,
所以k===0.0006,
所以d=0.0024v2+2.
(2)设每小时通过的车辆数为Q,则Q=.
即Q==.
因为0.0024v+≥2=0.24,
所以Q≤=,当且仅当0.0024v=,即v=50时,Q取最大值.
故当车速为50 km/h时,大桥上每小时通过的车辆最多.
【题目】某公司计划在今年内同时出售变频空调机和智能洗衣机,由于这两种产品的市场需求量非常大,有多少就能销售多少,因此该公司要根据实际情况(如资金、劳动力)确定产品的月供应量,以使得总利润达到最大.已知对这两种产品有直接限制的因素是资金和劳动力,经调查,得到关于这两种产品的有关数据如下表:
资金 | 每台产品所需资金(百元) | 月资金供应量 (百元) | |
空调机 | 洗衣机 | ||
成本 | 30 | 20 | 300 |
劳动力(工资) | 5 | 10 | 110 |
每台产品利润 | 6 | 8 |
试问:怎样确定两种货物的月供应量,才能使总利润最大?最大利润是多少?
【题目】(本小题满分14分)体育测试成绩分为四个等级:优、良、中、不及格.某班50名学生参加测试的结果如下:
等级 | 优 | 良 | 中 | 不及格 |
人数 | 5 | 19 | 23 | 3 |
(1)从该班任意抽取1名学生,求这名学生的测试成绩为“良”或“中”的概率;
(2)测试成绩为“优”的3名男生记为,,,2名女生记为,.现从这5人中任选2人参加学校的某项体育比赛.
① 写出所有等可能的基本事件;
② 求参赛学生中恰有1名女生的概率.
【题目】为了普及法律知识,达到“法在心中”的目的,某市法制办组织了普法知识竞赛.统计局调查队随机抽取了甲、乙两单位中各5名职工的成绩,成绩如下表:
甲单位 | 87 | 88 | 91 | 91 | 93 |
乙单位 | 85 | 89 | 91 | 92 | 93 |
(1)根据表中的数据,分别求出甲、乙两单位职工成绩的平均数和方差,并判断哪个单位对法律知识的掌握更稳定;
(2)用简单随机抽样法从乙单位5名职工中抽取2名,他们的成绩组成一个样本,求抽取的2名职工的分数差至少是4的概率.