题目内容
【题目】设A,B为曲线C:y= 上两点,A与B的横坐标之和为4.(12分)
(1)求直线AB的斜率;
(2)设M为曲线C上一点,C在M处的切线与直线AB平行,且AM⊥BM,求直线AB的方程.
【答案】
(1)
解:设A(x1, ),B(x2, )为曲线C:y= 上两点,
则直线AB的斜率为k= = (x1+x2)= ×4=1;
(2)
设直线AB的方程为y=x+t,代入曲线C:y= ,
可得x2﹣4x﹣4t=0,即有x1+x2=4,x1x2=﹣4t,
再由y= 的导数为y′= x,
设M(m, ),可得M处切线的斜率为 m,
由C在M处的切线与直线AB平行,可得 m=1,
解得m=2,即M(2,1),
由AM⊥BM可得,kAMkBM=﹣1,
即为 =﹣1,
化为x1x2+2(x1+x2)+20=0,
即为﹣4t+8+20=0,
解得t=7.
则直线AB的方程为y=x+7.
【解析】(1.)设A(x1 , ),B(x2 , ),运用直线的斜率公式,结合条件,即可得到所求;
(2.)设M(m, ),求出y= 的导数,可得切线的斜率,由两直线平行的条件:斜率相等,可得m,即有M的坐标,再由两直线垂直的条件:斜率之积为﹣1,可得x1 , x2的关系式,再由直线AB:y=x+t与y= 联立,运用韦达定理,即可得到t的方程,解得t的值,即可得到所求直线方程.
【考点精析】解答此题的关键在于理解直线的斜率的相关知识,掌握一条直线的倾斜角α(α≠90°)的正切值叫做这条直线的斜率,斜率常用小写字母k表示,也就是 k = tanα.
【题目】去年年底,某商业集团公司根据相关评分细则,对其所属25家商业连锁店进行了考核评估.将各连锁店的评估分数按[60,70), [70,80), [80,90), [90,100),分成四组,其频率分布直方图如下图所示,集团公司依据评估得分,将这些连锁店划分为A,B,C,D四个等级,等级评定标准如下表所示.
评估得分 | [60,70) | [70,80) | [80,90) | [90,100) |
评定等级 | D | C | B | A |
(1)估计该商业集团各连锁店评估得分的众数和平均数;
(2)从评估分数不小于80分的连锁店中任选2家介绍营销经验,求至少选一家A等级的概率.