题目内容

【题目】设A,B为曲线C:y= 上两点,A与B的横坐标之和为4.(12分)
(1)求直线AB的斜率;
(2)设M为曲线C上一点,C在M处的切线与直线AB平行,且AM⊥BM,求直线AB的方程.

【答案】
(1)

解:设A(x1 ),B(x2 )为曲线C:y= 上两点,

则直线AB的斜率为k= = (x1+x2)= ×4=1;


(2)

设直线AB的方程为y=x+t,代入曲线C:y=

可得x2﹣4x﹣4t=0,即有x1+x2=4,x1x2=﹣4t,

再由y= 的导数为y′= x,

设M(m, ),可得M处切线的斜率为 m,

由C在M处的切线与直线AB平行,可得 m=1,

解得m=2,即M(2,1),

由AM⊥BM可得,kAMkBM=﹣1,

即为 =﹣1,

化为x1x2+2(x1+x2)+20=0,

即为﹣4t+8+20=0,

解得t=7.

则直线AB的方程为y=x+7.


【解析】(1.)设A(x1 ),B(x2 ),运用直线的斜率公式,结合条件,即可得到所求;
(2.)设M(m, ),求出y= 的导数,可得切线的斜率,由两直线平行的条件:斜率相等,可得m,即有M的坐标,再由两直线垂直的条件:斜率之积为﹣1,可得x1 , x2的关系式,再由直线AB:y=x+t与y= 联立,运用韦达定理,即可得到t的方程,解得t的值,即可得到所求直线方程.
【考点精析】解答此题的关键在于理解直线的斜率的相关知识,掌握一条直线的倾斜角α(α≠90°)的正切值叫做这条直线的斜率,斜率常用小写字母k表示,也就是 k = tanα.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网