题目内容
【题目】去年年底,某商业集团公司根据相关评分细则,对其所属25家商业连锁店进行了考核评估.将各连锁店的评估分数按[60,70), [70,80), [80,90), [90,100),分成四组,其频率分布直方图如下图所示,集团公司依据评估得分,将这些连锁店划分为A,B,C,D四个等级,等级评定标准如下表所示.
评估得分 | [60,70) | [70,80) | [80,90) | [90,100) |
评定等级 | D | C | B | A |
(1)估计该商业集团各连锁店评估得分的众数和平均数;
(2)从评估分数不小于80分的连锁店中任选2家介绍营销经验,求至少选一家A等级的概率.
【答案】(1)众数是,平均数是;(2).
【解析】
(1)由最高小矩形的底边中点估计众数,利用中位数将小矩形面积分为左右两侧均为0.5求解中位数即可;
(2)列出所有可能的事件,然后找到满足题意的事件的个数,最后利用古典概型计算公式求解概率值即可.
(1)最高小矩形的底边中点为75,估计得分的众数为75分。
直方图中从左至第一、三、四个小矩形的面积分别为0.28,0.16,0.08,则第二个小矩形的面积为
1-0.28-0.16-0.08=0.48.
所以,
故估计该商业集团各连锁店评估得分的平均数为75.4.
(2)等级的频数为,记这两家分别为等级的频数为,记这四家分别为,从这6家连锁店中任选2家,共有
,共有15种选法.
其中至少选1家等级的选法有 共9种,则,
故至少选一家等级的概率为.
练习册系列答案
相关题目