ÌâÄ¿ÄÚÈÝ
19£®ÎªÔöÇ¿ÊÐÃñµÄ½ÚÄÜ»·±£Òâʶ£¬Ä³ÊÐÃæÏòÈ«ÊÐÕ÷ÕÙÒåÎñÐû´«Ö¾Ô¸Õߣ®´Ó·ûºÏÌõ¼þµÄ500ÃûÖ¾Ô¸ÕßÖÐËæ»ú³éÈ¡100ÃûÖ¾Ô¸Õߣ¬ÆäÄêÁäƵÂÊ·Ö²¼Ö±·½Í¼ÈçͼËùʾ£¬ÆäÖÐÄêÁä·Ö×éÇø¼äÊÇ£º[20£¬25£©£¬[25£¬30£©£¬[30£¬35£©£¬[35£¬40£©£¬[40£¬45]£®£¨¢ñ£©ÇóͼÖÐxµÄÖµ²¢¸ù¾ÝƵÂÊ·Ö²¼Ö±·½Í¼¹À¼ÆÕâ500ÃûÖ¾Ô¸ÕßÖÐÄêÁäÔÚ[35£¬40£©ËêµÄÈËÊý£»
£¨¢ò£©ÔÚ³é³öµÄ100ÃûÖ¾Ô¸ÕßÖа´ÄêÁä²ÉÓ÷ֲã³éÑùµÄ·½·¨³éÈ¡20Ãû²Î¼ÓÖÐÐĹ㳡µÄÐû´«»î¶¯£¬ÔÙ´ÓÕâ20ÃûÖвÉÓüòµ¥Ëæ»ú³éÑù·½·¨Ñ¡È¡3ÃûÖ¾Ô¸Õßµ£ÈÎÖ÷Òª¸ºÔðÈË£®¼ÇÕâ3ÃûÖ¾Ô¸ÕßÖС°ÄêÁäµÍÓÚ35ËꡱµÄÈËÊýΪX£¬ÇóXµÄ·Ö²¼Áм°ÊýѧÆÚÍû£®
·ÖÎö £¨I£©ÀûÓÃС¾ØÐεÄÃæ»ýµÈÓÚƵÂʼÆËã¼´µÃ½áÂÛ£»
£¨II£©ÀûÓ÷ֲã³éÑùµÄ·½·¨´ÓÖÐÑ¡È¡20Ãû£¬¿ÉÖªXµÄ¿ÉÄÜȡֵΪ0¡¢1¡¢2¡¢3£¬½ø¶ø¼ÆËã¿ÉµÃ½áÂÛ£®
½â´ð ½â£º£¨I£©¡ßС¾ØÐεÄÃæ»ýµÈÓÚƵÂÊ£¬
¡à³ý[35£¬40£©ÍâµÄƵÂʺÍΪ0.70£¬
¡à$x=\frac{1-0.70}{5}=0.06$£¬
¡à500ÃûÖ¾Ô¸ÕßÖÐÄêÁäÔÚ[35£¬40£©ËêµÄÈËÊýΪ0.06¡Á5¡Á500=150£¨ÈË£©£»
£¨II£©Ó÷ֲã³éÑùµÄ·½·¨£¬´ÓÖÐÑ¡È¡20Ãû£¬
ÔòÆäÖÐÄêÁä¡°µÍÓÚ35ËꡱµÄÈËÓÐ12Ãû£¬
¡°ÄêÁä²»µÍÓÚ35ËꡱµÄÈËÓÐ8Ãû£®
¹ÊXµÄ¿ÉÄÜȡֵΪ0£¬1£¬2£¬3£¬
¡à$P£¨{X=0}£©=\frac{C_8^3}{{C_{20}^3}}=\frac{14}{285}$£¬
$P£¨{X=1}£©=\frac{{C_{12}^1C_8^2}}{{C_{20}^3}}=\frac{28}{95}$£¬
$P£¨{X=2}£©=\frac{{C_{12}^2C_8^1}}{{C_{20}^3}}=\frac{44}{95}$£¬
$P£¨{X=3}£©=\frac{{C_{12}^3}}{{C_{20}^3}}=\frac{11}{57}$£¬
¹ÊXµÄ·Ö²¼ÁÐΪ
X | 0 | 1 | 2 | 3 |
P | $\frac{14}{285}$ | $\frac{28}{95}$ | $\frac{44}{95}$ | $\frac{11}{57}$ |
µãÆÀ ±¾Ì⿼²éÀëÉ¢ÐÍËæ»ú±äÁ¿µÄÆÚÍû£¬×¢Òâ½âÌâ·½·¨µÄ»ýÀÛ£¬ÊôÓÚÖеµÌ⣮
A£® | 4 | B£® | -4 | C£® | 2 | D£® | 0 |
A£® | $-\frac{2}{7}$ | B£® | $\frac{2}{7}$ | C£® | $-\frac{3}{7}$ | D£® | $\frac{3}{7}$ |
A£® | $\frac{1}{2}$ | B£® | -$\frac{1}{2}$ | C£® | $\frac{\sqrt{3}}{2}$ | D£® | -$\frac{\sqrt{3}}{2}$ |
£¨1£©¸ù¾ÝÒÔÉÏÊý¾ÝÍê³ÉÒÔÏÂ2¡Á2ÁÐÁª±í£º
ϲ°®Ô˶¯ | ²»Ï²°®Ô˶¯ | ×Ü¼Æ | |
ÄÐ | 10 | 18 | |
Å® | 5 | 12 | |
×Ü¼Æ | 30 |
£¨3£©´ÓŮ־ԸÕßÖгéÈ¡2È˲μӽӴý¹¤×÷£¬ÈôÆäÖÐϲ°®Ô˶¯µÄÈËÊýΪ¦Î£¬Çó¦ÎµÄ·Ö²¼ÁкÍÊýѧÆÚÍûE¦Î£®
²Î¿¼¹«Ê½£ºx2=$\frac{n£¨ad-bc£©^{2}}{£¨a+b£©£¨c+d£©£¨a+c£©£¨b+d£©}$£¬ÆäÖÐn=a+b+c+d
²Î¿¼Êý¾Ý£º
P£¨x2¡Ýx0£© | 0.40 | 0.25 | 0.10 | 0.010 |
x0 | 0.708 | 1.323 | 2.706 | 6.635 |