题目内容
(本题满分12分)在数列
中,
,
,
.
(1)证明数列
是等比数列;
(2)设数列
的前
项和
,求
的最大值。
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002028169481.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002028185415.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002028200714.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002028216518.png)
(1)证明数列
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002028232571.png)
(2)设数列
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002028169481.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002028263297.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002028278388.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002028294550.png)
(1)由题设
,
得
,
.又
,
所以数列
是首项为
,且公比为
的等比数列;(2)0.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002028200714.png)
得
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002028325861.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002028216518.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002028356405.png)
所以数列
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002028232571.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002028403205.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002028419256.png)
试题分析:(Ⅰ)由题设
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002028200714.png)
得
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002028325861.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002028216518.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002028356405.png)
所以数列
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002028232571.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002028403205.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002028419256.png)
(Ⅱ)由(Ⅰ)可知
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002028544611.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002028169481.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002028575603.png)
所以数列
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002028169481.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002028263297.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002028637989.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240020286532296.png)
=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002028684803.png)
故当n=1时,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002028294550.png)
点评:在求数列的通项公式时,常用的一种方法是构造新数列,通过构造的新数列是等差数列或等比数列来求。
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目