题目内容

(本小题满分12分)
数列
(Ⅰ)求并求数列的通项公式;
(Ⅱ)设证明:当
(Ⅰ)
(Ⅱ)证明见解析。
(Ⅰ)因为所以

一般地,当时,
,即
所以数列是首项为1、公差为1的等差数列,因此
时,
所以数列是首项为2、公比为2的等比数列,因此
故数列的通项公式为
(Ⅱ)由(Ⅰ)知,     ①
    ②
①-②得,

所以
要证明当时,成立,只需证明当时,成立.
证法一
(1)当n = 6时,成立.
(2)假设当时不等式成立,即
则当n=k+1时,
由(1)、(2)所述,当n≥6时,.即当n≥6时,
证法二
,则
所以当时,.因此当时,
于是当时,
综上所述,当时,
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网