题目内容
已知数列中,,.
(Ⅰ)求的通项公式;
(Ⅱ)若数列中,,,
证明:,.
(Ⅰ)求的通项公式;
(Ⅱ)若数列中,,,
证明:,.
(Ⅰ)的通项公式为,;(Ⅱ)同解析;
(Ⅰ)由题设:
,
.
所以,数列是首项为,公比为的等比数列,
,
即的通项公式为,.
(Ⅱ)用数学归纳法证明.
(ⅰ)当时,因,,所以
,结论成立.
(ⅱ)假设当时,结论成立,即,
也即.
当时,
,
又,
所以
.
也就是说,当时,结论成立.
根据(ⅰ)和(ⅱ)知,.
,
.
所以,数列是首项为,公比为的等比数列,
,
即的通项公式为,.
(Ⅱ)用数学归纳法证明.
(ⅰ)当时,因,,所以
,结论成立.
(ⅱ)假设当时,结论成立,即,
也即.
当时,
,
又,
所以
.
也就是说,当时,结论成立.
根据(ⅰ)和(ⅱ)知,.
练习册系列答案
相关题目