题目内容

【题目】在平面直角坐标系中,曲线的参数方程为 为参数),以坐标原点为极点, 轴正半轴为极轴建立极坐标系,直线的极坐标方程为,若直线与曲线相切;

(1)求曲线的极坐标方程;

(2)在曲线上取两点 与原点构成,且满足,求面积的最大值.

【答案】(1);(2)

【解析】试题分析:(1)利用极坐标与直角坐标的互化公式可得直线的直角坐标方程为

,消去参数可知曲线是圆心为,半径为的圆,由直线与曲线相切,可得: ;则曲线C的方程为, 再次利用极坐标与直角坐标的互化公式可得

可得曲线C的极坐标方程.

(2)由(1)不妨设M(),,(),

由此可求面积的最大值.

试题解析:(1)由题意可知直线的直角坐标方程为

曲线是圆心为,半径为的圆,直线与曲线相切,可得: ;可知曲线C的方程为

所以曲线C的极坐标方程为

.

(2)由(1)不妨设M(),,(),

时,

所以△MON面积的最大值为.

型】解答
束】
23

【题目】已知函数的定义域为

(1)求实数的取值范围;

(2)设实数的最大值,若实数 满足,求的最小值.

【答案】(1);(2)

【解析】试题分析:(1)由题意可知恒成立,令,分类讨论得到其解析式,通过作图发现其最大值,即可得到实数的取值范围;

(2)由(1)可知,所以

可求其最小值.

试题解析:(1)由题意可知恒成立,令

去绝对值可得:

画图可知的最小值为-3,所以实数的取值范围为

(2)由(1)可知,所以

当且仅当,即等号成立,

所以的最小值为

练习册系列答案
相关题目

【题目】已知椭圆C:(a>b>0)的左、右焦点分别为F1,F2,且离心率为,M为椭圆上任意一点,当∠F1MF2=90°时,△F1MF2的面积为1.

(Ⅰ)求椭圆C的方程;

(Ⅱ)已知点A是椭圆C上异于椭圆顶点的一点,延长直线AF1,AF2分别与椭圆交于点B,D,设直线BD的斜率为k1,直线OA的斜率为k2,求证:k1·k2等于定值.

【答案】(Ⅰ)(Ⅱ)见解析

【解析】

Ⅰ)由题意可求得,则,椭圆的方程为.

Ⅱ)设

当直线的斜率不存在或直线的斜率不存在时,.

当直线的斜率存在时,,设直线的方程为联立直线方程与椭圆方程,结合韦达定理计算可得直线的斜率为直线的斜率为.综上可得:直线的斜率之积为定值.

Ⅰ)设由题

解得,则椭圆的方程为.

Ⅱ)设,当直线的斜率不存在时,

,则,直线的方程为代入

可得 ,则,

直线的斜率为,直线的斜率为

当直线的斜率不存在时,同理可得.

当直线的斜率存在时,设直线的方程为

则由消去可得:

,则,代入上述方程可得:

设直线的方程为,同理可得

直线的斜率为

直线的斜率为 .

所以,直线的斜率之积为定值,即.

【点睛】

(1)解答直线与椭圆的题目时,时常把两个曲线的方程联立,消去x(y)建立一元二次方程,然后借助根与系数的关系,并结合题设条件建立有关参变量的等量关系.

(2)涉及到直线方程的设法时,务必考虑全面,不要忽略直线斜率为0或不存在等特殊情形.

型】解答
束】
21

【题目】已知函数f(x)=(x+b)(-a),(b>0),在(-1,f(-1))处的切线方程为(e-1)x+ey+e-1=0.

(Ⅰ)求a,b;

(Ⅱ)若方程f(x)=m有两个实数根x1,x2,且x1<x2,证明:x2-x1≤1+

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网