题目内容
【题目】以直角坐标系的原点为极点,轴的正半轴为极轴建立极坐标系,已知点的直角坐标为,若直线的极坐标方程为,曲线的参数方程是(为参数).
(1)求直线l和曲线的普通方程;
(2)设直线l和曲线交于两点,求.
【答案】(1)和;(2)1
【解析】
(1)直线的极坐标方程为,利用互化公式,能求出直线的普通方程,曲线的参数方程利用代入法消去参数能求出曲线的普通方程;(2)点的直角坐标为,点在直线上,求出直线的参数方程,得到,由此利用韦达定理,结合直线参数方程的几何意义,能求出的值.
(1)因为,所以
由,得,因为消去t得
所以直线l和曲线的普通方程分别为和.
(2)点的直角坐标为,点在直线l上,设直线的参数方程:(t为参数),
对应的参数为.
练习册系列答案
相关题目
【题目】是指空气中直径小于或等于微米的颗粒物(也称可入肺颗粒物).为了探究车流量与的浓度是否相关,现采集到某城市周一至周五某一时间段车流量与的数据如下表:
时间 | 周一 | 周二 | 周三 | 周四 | 周五 |
车流量(万辆) | |||||
的浓度(微克/立方米) |
(Ⅰ)根据上表数据,请在所给的坐标系中画出散点图;
(Ⅱ)根据上表数据,用最小二乘法求出关于的线性回归方程;
(Ⅲ)若周六同一时间段的车流量是万辆,试根据(Ⅱ)求出的线性回归方程,预测此时的浓度为多少(保留整数)?
参考公式:由最小二乘法所得回归直线的方程是:,
其中.