题目内容

11.设函数f(x)=$\frac{{x}^{3}}{3}$-(a+1)x2+4ax+b,其中a,b∈R.
(Ⅰ) 求函数f(x)的单调递增区间;
(Ⅱ)若函数f(x)在(-1,1)内有且只有一个极值点,求实数a的取值范围.

分析 (Ⅰ)先求导,再分类讨论,根据导数和函数单调性的关系即可求出单调增区间;
(Ⅱ)函数f(x)在(-1,1)上有且只有一个极值点,等价于f′(x)在(-1,1)上有且只有一个解;由(II)及零点存在定理可得$\left\{{\begin{array}{l}{a<1\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;}\\{f'(-1)f'(1)<0}\end{array}}\right.$,从而可确定a的取值范围.

解答 解:(Ⅰ)因为f′(x)=x2-2(a+1)x+4a=(x-2a)(x-2),
令f′(x)=0,得x=2a或x=2.
当a>1时,f(x)的单调递增区间为(-∞,2),(2a,+∞);
当a=1时,f(x)的单调递增区间为(-∞,+∞);
当a<1时,f(x)的单调递增区间为(-∞,2a),(2,+∞).       
(Ⅱ)由(Ⅰ)得f′(x)=x2-2(a+1)x+4a,
∵f(x)在(-1,1)内有且只有一个极值点,
∴$\left\{{\begin{array}{l}{a<1\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;}\\{f'(-1)f'(1)<0}\end{array}}\right.$,
解得-$\frac{1}{2}$<a<$\frac{1}{2}$.
所以a的取值范围是$({-\frac{1}{2},\frac{1}{2}})$.

点评 本题考查函数的极值和单调性的应用,解题的关键是对于字母系数a的讨论,注意讨论的过程中做到不重不漏,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网