题目内容
【题目】已知函数,
,在
处的切线方程为
.
(1)求,
;
(2)若,证明:
.
【答案】(1),
;(2)见解析
【解析】试题分析:(1)求出函数的导数,得到关于 的方程组,解出即可;
(2)由(1)可知,
,
由,可得
,令
, 利用导数研究其单调性可得
,
从而证明.
试题解析:((1)由题意,所以
,
又,所以
,
若,则
,与
矛盾,故
,
.
(2)由(1)可知,
,
由,可得
,
令,
,
令
当时,
,
单调递减,且
;
当时,
,
单调递增;且
,
所以在
上当单调递减,在
上单调递增,且
,
故,
故.
【点睛】本题考查利用函数的切线求参数的方法,以及利用导数证明不等式的方法,解题时要认真审题,注意导数性质的合理运用.
【题型】解答题
【结束】
22
【题目】在平面直角坐标系中,曲线
的参数方程为
(
,
为参数),以坐标原点
为极点,
轴正半轴为极轴建立极坐标系,直线
的极坐标方程为
,若直线
与曲线
相切;
(1)求曲线的极坐标方程;
(2)在曲线上取两点
,
与原点
构成
,且满足
,求面积
的最大值.
【答案】(1);(2)
【解析】试题分析:(1)利用极坐标与直角坐标的互化公式可得直线的直角坐标方程为
,
,消去参数可知曲线
是圆心为
,半径为
的圆,由直线
与曲线
相切,可得:
;则曲线C的方程为
, 再次利用极坐标与直角坐标的互化公式可得
可得曲线C的极坐标方程.
(2)由(1)不妨设M(),
,(
),
,
,
由此可求面积的最大值.
试题解析:(1)由题意可知直线的直角坐标方程为
,
曲线是圆心为
,半径为
的圆,直线
与曲线
相切,可得:
;可知曲线C的方程为
,
所以曲线C的极坐标方程为,
即.
(2)由(1)不妨设M(),
,(
),
,
,
当 时,
,
所以△MON面积的最大值为.
![](http://thumb.zyjl.cn/images/loading.gif)
【题目】“双十一网购狂欢节”源于淘宝商城(天猫)2009年11月11 日举办的促销活动,当时参与的商家数量和促销力度均有限,但营业额远超预想的效果,于是11月11日成为天猫举办大规模促销活动的固定日期.如今,中国的“双十一”已经从一个节日变成了全民狂欢的“电商购物日”.某淘宝电商分析近8年“双十一”期间的宣传费用(单位:万元)和利润
(单位:十万元)之间的关系,得到下列数据:
2 | 3 | 4 | 5 | 6 | 8 | 9 | 11 | |
1 | 2 | 3 | 3 | 4 | 5 | 6 | 8 |
(1)请用相关系数说明
与
之间是否存在线性相关关系(当
时,说明
与
之间具有线性相关关系);
(2)根据(1)的判断结果,建立与
之间的回归方程,并预测当
时,对应的利润
为多少(
精确到0.1).
附参考公式:回归方程中中
和
最小二乘估计分别为
,相关系数
参考数据:
.