题目内容

【题目】设F1,F2分别为椭圆C

(1)若椭圆C上的点

(2)设点K是(1)中所得椭圆上的动点,求线段F1K的中点的轨迹方程;

(3)已知椭圆具有性质:若M,N是椭圆C上关于原点对称的两个点,点P是椭圆上任意一点,当直线PM,PN的斜率都存在,并记为kPM,kPN时,那么kPM与kPN之积是与点P位置无关的定值,试写出双曲

【答案】(1)见解析;(2);(3)见解析

【解析】

分析:(1)到两交点的距离之和为4,点在曲线上,列出的方程求解即可。

(2)设椭圆上的动点为,线段的中点,利用中点的坐标关系式,列出的坐标关系,用表示出,代入椭圆方程即可。

(3)分别设出的坐标,表示出斜率化简整理即可。

详解:(1)椭圆C的焦点在x轴上.由椭圆上的点A到F1,F2两点的距离之和是4,得2a=4,即a=2.

又点A,

+=1,b2=3.

∴c2=a2-b2=1.

椭圆C的方程+=1,焦点F1(-1,0),F2(1,0).

(2)设椭圆C上的动点为K(x1,y1),线段F1K的中点Q(x,y)满足:x=,y=,

∴x1=2x+1,y1=2y.

+=1,

+=1为所求的轨迹方程.

(3)类似的性质为:若M,N是双曲-=1(a>0,b>0)上关于原点对称的两个点,点P是双曲线上任意一点,当直线PM,PN的斜率都存在,并记为kPM,kPN时,那么kPMkPN之积是与点P位置无关的定值.

证明:设点M的坐标为(m,n),则点N的坐标为(-m,-n),其-=1.

又设点P的坐标为(x,y),

∵kPM=,kPN=,

∴kPM·kPN=.

-=1,

∴x2=a2,m2=a2.

∴x2-m2=(y2-n2).

∴kPM·kPN==(定值).

练习册系列答案
相关题目

【题目】北京某附属中学为了改善学生的住宿条件,决定在学校附近修建学生宿舍,学校总务办公室用1000万元从政府购得一块廉价土地,该土地可以建造每层1000平方米的楼房,楼房的每平方米建筑费用与建筑高度有关,楼房每升高一层,整层楼每平方米建筑费用提高0.02万元,已知建筑第5层楼房时,每平方米建筑费用为0.8万元.

(1)若学生宿舍建筑为层楼时,该楼房综合费用为万元,综合费用是建筑费用与购地费用之和),写出的表达式;

(2)为了使该楼房每平方米的平均综合费用最低,学校应把楼层建成几层?此时平均综合费用为每平方米多少万元?

【答案】(1);(2)学校应把楼层建成层,此时平均综合费用为每平方米万元

【解析】

由已知求出第层楼房每平方米建筑费用为万元,得到第层楼房建筑费用,由楼房每升高一层,整层楼建筑费用提高万元,然后利用等差数列前项和求建筑层楼时的综合费用

设楼房每平方米的平均综合费用为,则,然后利用基本不等式求最值.

解:由建筑第5层楼房时,每平方米建筑费用为万元,

且楼房每升高一层,整层楼每平方米建筑费用提高万元,

可得建筑第1层楼房每平方米建筑费用为:万元.

建筑第1层楼房建筑费用为:万元

楼房每升高一层,整层楼建筑费用提高:万元

建筑第x层楼时,该楼房综合费用为:

设该楼房每平方米的平均综合费用为

则:

当且仅当,即时,上式等号成立.

学校应把楼层建成10层,此时平均综合费用为每平方米万元.

【点睛】

本题考查简单的数学建模思想方法,训练了等差数列前n项和的求法,训练了利用基本不等式求最值,是中档题.

型】解答
束】
20

【题目】已知

(1)求函数的最小正周期和对称轴方程;

(2)若,求的值域.

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网