题目内容
【题目】北京某附属中学为了改善学生的住宿条件,决定在学校附近修建学生宿舍,学校总务办公室用1000万元从政府购得一块廉价土地,该土地可以建造每层1000平方米的楼房,楼房的每平方米建筑费用与建筑高度有关,楼房每升高一层,整层楼每平方米建筑费用提高0.02万元,已知建筑第5层楼房时,每平方米建筑费用为0.8万元.
(1)若学生宿舍建筑为层楼时,该楼房综合费用为万元,综合费用是建筑费用与购地费用之和),写出的表达式;
(2)为了使该楼房每平方米的平均综合费用最低,学校应把楼层建成几层?此时平均综合费用为每平方米多少万元?
【答案】(1);(2)学校应把楼层建成层,此时平均综合费用为每平方米万元
【解析】
由已知求出第层楼房每平方米建筑费用为万元,得到第层楼房建筑费用,由楼房每升高一层,整层楼建筑费用提高万元,然后利用等差数列前项和求建筑层楼时的综合费用;
设楼房每平方米的平均综合费用为,则,然后利用基本不等式求最值.
解:由建筑第5层楼房时,每平方米建筑费用为万元,
且楼房每升高一层,整层楼每平方米建筑费用提高万元,
可得建筑第1层楼房每平方米建筑费用为:万元.
建筑第1层楼房建筑费用为:万元.
楼房每升高一层,整层楼建筑费用提高:万元.
建筑第x层楼时,该楼房综合费用为:.
;
设该楼房每平方米的平均综合费用为,
则:,
当且仅当,即时,上式等号成立.
学校应把楼层建成10层,此时平均综合费用为每平方米万元.
【点睛】
本题考查简单的数学建模思想方法,训练了等差数列前n项和的求法,训练了利用基本不等式求最值,是中档题.
【题型】解答题
【结束】
20
【题目】已知.
(1)求函数的最小正周期和对称轴方程;
(2)若,求的值域.
【答案】(1)对称轴为,最小正周期;(2)
【解析】
(1)利用正余弦的二倍角公式和辅助角公式将函数解析式进行化简得到,由周期公式和对称轴公式可得答案;(2)由x的范围得到,由正弦函数的性质即可得到值域.
(1)
令,则
的对称轴为,最小正周期;
(2)当时,,
因为在单调递增,在单调递减,
在取最大值,在取最小值,
所以,
所以.