题目内容
【题目】在学习强国活动中,某市图书馆的科技类图书和时政类图书是市民借阅的热门图书.为了丰富图书资源,现对已借阅了科技类图书的市民(以下简称为“问卷市民”)进行随机问卷调查,若不借阅时政类图书记1分,若借阅时政类图书记2分,每位市民选择是否借阅时政类图书的概率均为,市民之间选择意愿相互独立.
(1)从问卷市民中随机抽取4人,记总得分为随机变量,求的分布列和数学期望;
(2)(i)若从问卷市民中随机抽取人,记总分恰为分的概率为,求数列的前10项和;
(ⅱ)在对所有问卷市民进行随机问卷调查过程中,记已调查过的累计得分恰为分的概率为(比如:表示累计得分为1分的概率,表示累计得分为2分的概率,),试探求与之间的关系,并求数列的通项公式.
【答案】(1)分布列见解析,6;(2)(i);(ⅱ),.
【解析】
(1)独立重复试验,列出随机变量可能取值为4,5,6,7,8,再求出各可能值的概率可解得.
(2)(i)总分恰为分的概率是等比数列,用基本量计算.
(2)(ⅱ)递推数列化为等比数列求解.
(1)的可能取值为4,5,6,7,8,
,
所有的分布列为
4 | 5 | 6 | 7 | 8 | |
所以数学期望.
(2)(i)总分恰为分的概率为,
所以数列是首项为,公比为的等比数列,
前10项和.
(ii)已调查过的累计得分恰为分的概率为,得不到分的情况只有先得分,再得2分,概率为.
因为,即,
所以,
则是首项为,公比为的等比数列,
所以,
所以.
【题目】由于研究性学习的需要,中学生李华持续收集了手机“微信运动”团队中特定20名成员每天行走的步数,其中某一天的数据记录如下:
5860 6520 7326 6798 7325 8430 8215 7453 7446 6754
7638 6834 6460 6830 9860 8753 9450 9860 7290 7850
对这20个数据按组距1000进行分组,并统计整理,绘制了如下尚不完整的统计图表:
步数分组统计表(设步数为)
组别 | 步数分组 | 频数 |
2 | ||
10 | ||
2 | ||
(Ⅰ)写出的值,并回答这20名“微信运动”团队成员一天行走步数的中位数落在哪个组别;
(Ⅱ)记组步数数据的平均数与方差分别为,,组步数数据的平均数与方差分别为,,试分别比较与以,与的大小;(只需写出结论)
(Ⅲ)从上述两个组别的数据中任取2个数据,记这2个数据步数差的绝对值为,求的分布列和数学期望.
【题目】根据国家统计局数据,1978年至2018年我国GDP总量从0.37万亿元跃升至90万亿元,实际增长了242倍多,综合国力大幅提升.
将年份1978,1988,1998,2008,2018分别用1,2,3,4,5代替,并表示为;表示全国GDP总量,表中,.
3 | 26.474 | 1.903 | 10 | 209.76 | 14.05 |
(1)根据数据及统计图表,判断与(其中为自然对数的底数)哪一个更适宜作为全国GDP总量关于的回归方程类型?(给出判断即可,不必说明理由),并求出关于的回归方程.
(2)使用参考数据,估计2020年的全国GDP总量.
线性回归方程中斜率和截距的最小二乘法估计公式分别为:
,.
参考数据:
4 | 5 | 6 | 7 | 8 | |
的近似值 | 55 | 148 | 403 | 1097 | 2981 |