题目内容
【题目】设抛物线C:x2=4y的焦点为F,斜率为k的直线l经过点F,若抛物线C上存在四个点到直线l的距离为2,则k的取值范围是( )
A.(﹣∞,﹣ )∪( ,+∞)
B.(﹣ ,﹣1)∪(1, )
C.(﹣ , )
D.(﹣∞,﹣1)∪(1,+∞)
【答案】A
【解析】解:由题意,斜率为k的直线l的方程为y=kx+1,
设与直线l平行的直线方程为kx﹣y+b=0,由两条平行线间的距离公式可得 =2,
∴b=1±2 ,
取直线kx﹣y+1﹣2 =0,即y=kx+1﹣2 ,
代入抛物线C:x2=4y,整理可得x2﹣4kx﹣4+8 =0,
∴△=16k2+16﹣32 >0,
∴k2+1﹣2 >0,
∴ >2,
∴k 或k .
故选:A.
练习册系列答案
相关题目
【题目】某市通过随机询问100名不同年级的学生是否能做到“扶跌倒老人”,得到如下列联表:
做不到 | 能做到 | |
高年级 | 45 | 10 |
低年级 | 30 | 15 |
则下列结论正确的是( )
附参照表:
0.10 | 0.025 | 0.01 | |
2.706 | 5.024 | 6.635 |
参考公式:,其中
A. 在犯错误的概率不超过的前提下,认为“学生能否做到‘扶跌倒老人’与年级高低有关”
B. 在犯错误的概率不超过的前提下,“学生能否做到‘扶跌倒老人’与年级高低无关”
C. 有以上的把握认为“学生能否做到‘扶跌倒老人’与年级高低有关”
D. 有以上的把握认为“学生能否做到‘扶跌倒老人’与年级高低无关”