题目内容
【题目】(1)已知命题:实数满足,命题:实数满足方程表示的焦点在轴上的椭圆,且是的充分不必要条件,求实数的取值范围;
(2)设命题:关于的不等式的解集是;:函数的定义域为.若是真命题,是假命题,求实数的取值范围.
【答案】(1);(2)
【解析】分析:(1)利用一元二次不等式的解法化简,利用椭圆的标准方程化简,由包含关系列不等式求解即可;(2)化简命题可得,化简命题可得,由为真命题,为假命题,可得一真一假,分两种情况讨论,对于真假以及假真分别列不等式组,分别解不等式组,然后求并集即可求得实数的取值范围.
详解:(1)由得:,即命题
由表示焦点在轴上的椭圆,可得,解得,即命题.
因为是的充分不必要条件,所以或
解得:,∴实数的取值范围是.
(2)解:命题为真命题时,实数的取值集合为
对于命题:函数的定义域为的充要条件是①恒成立.
当时,不等式①为,显然不成立;
当时,不等式①恒成立的条件是,解得
所以命题为真命题时,的取值集合为
由“是真命题,是假命题”,可知命题、一真一假
当真假时,的取值范围是
当假真时,的取值范围是
综上,的取值范围是.
【题目】某工厂为了对研发的一种产品进行合理定价,将该产品按事先拟定的价格进行试销,得到如下数据:
单价元 | 9 | 9.2 | 9.4 | 9.6 | 9.8 | 10 |
销量件 | 100 | 94 | 93 | 90 | 85 | 78 |
(1)若销量与单价服从线性相关关系,求该回归方程;
(2)在(1)的前提下,若该产品的成本是5元/件,问:产品该如何确定单价,可使工厂获得最大利润。
附:对于一组数据,,……,
其回归直线的斜率的最小二乘估计值为;
本题参考数值:.
【题目】某市为提高市民的戒烟意识,通过一个戒烟组织面向全市烟民征招志愿戒烟者,从符合条件的志愿者中随机抽取100名,将年龄分成,,,,五组,得到频率分布直方图如图所示.
(1)求图中的值,并估计这100名志愿者的平均年龄(同一组中的数据用该组区间的中点值作代表);
(2)若年龄在的志愿者中有2名女性烟民,现从年龄在的志愿者中随机抽取2人,求至少有一名女性烟民的概率;
(3)该戒烟组织向志愿者推荐了,两种戒烟方案,这100名志愿者自愿选取戒烟方案,并将戒烟效果进行统计如下:
有效 | 无效 | 合计 | |
方案 | 48 | 60 | |
方案 | 36 | ||
合计 |
完成上面的列联表,并判断是否有的把握认为戒烟方案是否有效与方案选取有关.
参考公式:,.
参考数据:
0.15 | 0.10 | 0.05 | 0.025 | |
2.072 | 2.706 | 3.841 | 5.024 |