题目内容
【题目】设f(x)=|lgx|,且0<a<b<c时,有f(a)>f(c)>f(b),则( )
A.(a﹣1)(c﹣1)>0
B.ac>1
C.ac=1
D.ac<1
【答案】D
【解析】解:∵f(x)=|lgx|,
∴作出f(x)的图象如图:
∵0<a<b<c时,有f(a)>f(c)>f(b),
∴0<a<1,c>1,
即f(a)=|lga|=﹣lga,f(c)=|lgc|=lgc,
∵f(a)>f(c),
∴﹣lga>lgc,
则lga+lgc=lgac<0,
则0<ac<1,
故选:D
【考点精析】通过灵活运用复合函数单调性的判断方法,掌握复合函数f[g(x)]的单调性与构成它的函数u=g(x),y=f(u)的单调性密切相关,其规律:“同增异减”即可以解答此题.
练习册系列答案
相关题目