题目内容
【题目】如图,ABCD是正方形,O是正方形的中心,PO底面ABCD,E是PC的中点。
求证:(1)PA∥平面BDE ;
(2)平面PAC平面BDE.
【答案】证明:(Ⅰ)连结EO,
在△PAC中,∵O是AC的中点,E是PC的中点,
∴OE∥AP
又∵OE平面BDE,
PA平面BDE,
∴PA∥平面BDE
(Ⅱ)∵PO底面ABCD,
∴POBD
又∵ACBD,且ACPO=O,
∴BD平面PAC.
而BD平面BDE,
∴平面PAC平面BDE。
【解析】
证明:(Ⅰ)连结EO,
在△PAC中,∵O是AC的中点,E是PC的中点,
∴OE∥AP.
又∵OE平面BDE,
PA平面BDE,
∴PA∥平面BDE.
(Ⅱ)∵PO底面ABCD,
∴POBD.
又∵ACBD,且ACPO=O,
∴BD平面PAC.
而BD平面BDE,
∴平面PAC平面BDE.
练习册系列答案
相关题目