题目内容
【题目】在平面直角坐标系xOy中,已知圆x2+y2﹣12x+32=0的圆心为Q,过点P(0,2)且斜率为k的直线与圆Q相交于不同的两点A,B.
(1)求k的取值范围;
(2)是否存在常数k,使得向量 与 共线?如果存在,求k值;如果不存在,请说明理由.
【答案】
(1)解:圆的方程可写成(x﹣6)2+y2=4,所以圆心为Q(6,0),过P(0,2)
且斜率为k的直线方程为y=kx+2.
代入圆方程得x2+(kx+2)2﹣12x+32=0,
整理得(1+k2)x2+4(k﹣3)x+36=0. ①
直线与圆交于两个不同的点A,B等价于△=[4(k﹣3)2]﹣4×36(1+k2)=42(﹣8k2﹣6k)>0,
解得 ,即k的取值范围为 .
(2)解:设A(x1,y1),B(x2,y2),则 ,
由方程①, ②
又y1+y2=k(x1+x2)+4. ③
而 .
所以 与 共线等价于(x1+x2)=﹣3(y1+y2),
将②③代入上式,解得 .
由(1)知 ,故没有符合题意的常数k
【解析】(1)先把圆的方程整理成标准方程,进而求得圆心,设出直线方程代入圆方程整理后,根据判别式大于0求得k 的范围,(2)A(x1 , y1),B(x2 , y2),根据(1)中的方程和韦达定理可求得x1+x2的表达式,根据直线方程可求得y1+y2的表达式,进而根据以 与 共线可推知(x1+x2)=﹣3(y1+y2),进而求得k,根据(1)k的范围可知,k不符合题意.
【考点精析】解答此题的关键在于理解向量的共线定理的相关知识,掌握设,,其中,则当且仅当时,向量、共线.
【题目】海水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取了100 个网箱,测量各箱水产品的产量(单位:kg),其频率分布直方图如图:
(Ⅰ)设两种养殖方法的箱产量相互独立,记A表示事件“旧养殖法的箱产量低于50kg,新养殖法的箱产量不低于50kg”,估计A的概率;
(Ⅱ)填写下面列联表,并根据列联表判断是否有99%的把握认为箱产量与养殖方法有关:
箱产量<50kg | 箱产量≥50kg | |
旧养殖法 | ||
新养殖法 |
(Ⅲ)根据箱产量的频率分布直方图,求新养殖法箱产量的中位数的估计值(精确到0.01).
附:
P(K2≥k) | 0.050 | 0.010 | 0.001 |
K | 3.841 | 6.635 | 10.828 |
K2= .