题目内容

(本小题满分14分)
已知函数f(x)=-kx,.
(1)若k=e,试确定函数f(x)的单调区间;
(2)若k>0,且对于任意确定实数k的取值范围;
(3)设函数F(x)=f(x)+f(-x),求证:F(1)F(2)…F(n)>)。
.解:(Ⅰ)由,所以
,故的单调递增区间是
,故的单调递减区间是
(Ⅱ)由可知是偶函数.
于是对任意成立等价于对任意成立.

①当时,
此时上单调递增.
,符合题意.
②当时,
变化时的变化情况如下表:









单调递减
极小值
单调递增
由此可得,在上,
依题意,,又
综合①,②得,实数的取值范围是
(Ⅲ)



由此得,
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网